

Short-Range Wakes in Elliptical Pipe Geometry

Igor Zagorodnov Beam Dynamics Group Meeting 05.09.05

Pumping slot

w? $\sigma = 25 \mu m$

Theoretical results (Bethe theory) only for $w \leq \sigma$.

Pumping slot

Effect of the slot is small.

Accuracy estimation of the numerical results.Wake scaling for geometry parameters.

Used tools:

ECHO (time-domain), CST Microwave Studio (modeling, meshing), Matlab (pre- and postprocessing).

$$\sigma = 250 \,\mu m \qquad k_{loss} = 37.2 \left[V / pC \right]$$
$$\sigma = 25 \,\mu m \qquad k_{loss} = 372 \left[V / pC \right]$$
$$W = W^{in} + W^{out}$$

Accuracy of 3D calculations

 k_{loss}^{out}

σ	dx	dy,dz	Loss,2D	Error, 2D	Loss, 3D	Error, 3D
[µm]	[σ]	[σ]	[V/pC]	[V/pC]	[V/pC]	[V/pC]
250	1/40	1/40	36.3097	ref.		
250	1/20	1/20	36.2932	0.016		
250	1/5	1/5	36.2369	0.07	36.2265	0.1
25	1/20	1/20	370.77	ref.		
25	1/10	1/10	370.60	0.17		
25	1/5	1/5	369.96	0.8		
25	1/5	2			369.78	1

 $k_{loss}^{out} = O(\sigma^{-1}\ln(b/a))$

$$W^{out} = O(\sigma^{-1})$$

Accuracy of 3D calculations

 k_{loss}^{in}

σ	dx	dy,dz	Loss,2D	Error, 2D	Loss, 3D	Error, 3D
[µm]	[σ]	[σ]	[V/pC]	[V/pC]	[V/pC]	[V/pC]
250	1/40	1/40	-0.8606	ref.		
250	1/10	1/10	-0.8678	0.001		
250	1/5	1/5	-0.8802	0.012	-0.8478	0.013
25	1/20	1/20	0.8639	ref.		
25	1/10	1/10	-0.8619	0.002		
25	1/5	1/5	-0.8859	0.02		
25	1/5	2			-0.9380	0.17

$$k_{loss}^{in} = O(a^{-1})$$

 $k_{loss}^{in} = k_{loss}^{out}$

 $W^{in} = O(1), \quad \sigma \to 0$

Scaling laws

$$k_{loss}^{out} = O\left(\sigma^{-1}\ln\left(\frac{b}{a}\right)\right)$$

$$k_{loss}^{in} = O\left(\frac{1}{a}\right)$$

 $k_{loss}^{out} = O\left(\sigma^{-1}\theta^{\alpha}\ln\left(\frac{b}{a}\right)\right)$

$$k_{loss}^{in} = O\left(\frac{\theta^{\beta}}{a}\right)$$

 $\alpha, \beta?$

Scaling laws $(w > \sigma)$

1-	out	
n	loss	

w [mm]	$\theta/(2\pi)$	σ [μm]	Loss [V/pC]
7	0.339	250	3.04+-0.1
4	0.167	250	0.91+-0.1
2	0.083	250	0.23+-0.1
7	0.339	25	31.8+-1
4	0.167	25	
2	0.083	25	2.8+-1

$$k_{loss}^{out} = O(\sigma^{-1})$$

$$k_{loss}^{out} = O(\theta^{1.8}) \quad ?!$$

$$\sigma = 250 \mu m \qquad W^{out} = O(\theta^{1.8}), \quad \theta \to 0, \quad w > \sigma$$

l_{r}^{in}	
<i>n</i> loss	

a = 4mm

w [mm]	$\theta/(2\pi)$	σ [μm]	Loss [V/pC]
7	0.339	250	-0.162+-0.013
4	0.167	250	-0.065+-0.013
2	0.083	250	-0.01+-0.013
7	0.339	25	-0.247+-0.17
4	0.167	25	
2	0.083	25	

 $k_{loss}^{in} = O(1), \quad \sigma \to 0$

$$k_{loss}^{in} = k_{loss}^{out}$$

$$k_{loss}^{in} = O(\theta) \quad ?!$$

$$\sigma = 250 \mu m$$
 $W^{in} = O(\theta), \quad \theta \to 0, \quad w > \sigma$

 s/σ

Scaling laws and extrapolation

 $w > \sigma$

$$k_{loss}^{out} = O\left(\sigma^{-1}\theta^{1.8}\ln\left(\frac{b}{a}\right)\right)$$

w [mm]	b, [mm]	a, [mm]	$\theta/(2\pi)$	σ [μm]	Loss [V/pC]
7	10	4	0.339	250	3
1	20	7.5	0.021	25	0.2 🖌

$$k_{loss}^{in} = O\left(\frac{\theta}{a}\right)$$

w [mm]	a, [mm]	$\theta/(2\pi)$	σ [μm]	Loss [V/pC]
7	4	0.339	250	-0.16
1	7.5	0.021	25	-0.005 🎽

$$k_{loss}^{out} = 3 \cdot 10 \left(\frac{0.021}{0.339}\right)^{1.8} \frac{\ln\left(\frac{20}{7.5}\right)}{\ln\left(\frac{10}{4}\right)} = 0.2 \left[\frac{V}{pC}\right] \quad k_{loss}^{in} = -0.16 \cdot \left(\frac{0.021 \cdot 4}{0.339 \cdot 7.5}\right) = -0.005 \left[\frac{V}{pC}\right]$$
$$k_{loss} = 0.2 \left[\frac{V}{pC}\right]$$

(K. Zotter et al., Impedances and Wakes ..., 1998 andK.L.F.Bane, I.A.Zagorodnov, SLAC-PUB-11388, 2005)

Accuracy of the energy method

w [mm]	σ [μm]	K_loss from time-domain [V/pC]	K_loss from energy [V/pC]	Error, [V/pC]
7	250	2.88	3.10	0.22
7	25	31.5	31.0	0.5
2	250	0.22	0.26	0.04
2	25	2.75	2.63	0.12

h = 20mm

ε[mm]	Mesh step in	Ellipse	Ellipse with slot	$\frac{2\pi}{w}$
	[σ]			$Z_0 c$
0.25	2	2.89161337	2.89165659	4.32e-5
0.25	1	2.90553777	2.90560728	6.95e-5

$$k_{loss} = 0.03 \pm 0.12 \left[V / pC \right]$$

$$k_{loss} < 0.2 \left[V / pC \right]$$

$$W_{y}(s, x = 0, y = 0) \approx \int_{-\infty}^{s} \frac{W(\overline{s}, x = 0, y = 0)}{a_{x}} d\overline{s}$$

$$k_{kick, x} < 0.001 \left[V / pC \right]$$

Energy method
$$k_{loss} = 85[V/pC]$$

Old pipe?

Direct time-domain with ECHO

$$k_{loss} = \underbrace{84}_{loss} + 248x_{s} - 257y_{s} \left[V / pC\right]$$

$$k_{kick,x} = 390x_{s} + 46x_{w} = 436x \left[V / pC\right]$$

$$k_{kick,y} = 348y_{s} - 47y_{w} = 301y \left[V / pC\right]$$

$$w_{y} = 7.8 mm \qquad k_{loss} = 85 \left[V / pC \right]$$
$$w_{y} = 9 mm \qquad k_{loss} = 91 \left[V / pC \right]$$

The energy loss for the new smaller pipe is a little smaller!

	Loss,	Spread,	Peak,
	V/pC	V/pC	V/pC
var1	84	33	-118
var2	42	16	-58

$$k_{kick,x}^{slot} < 0.0001 = 0.01 = k_{kick,x}^{abs} \sigma [V / pC]$$

Longitudinal wake for the case of the elliptical pipe (3.8mm)

	pro	Loss,	Spread,	Peak,
	section (6.1 m)	V/pC	V/pC	V/pC
absorber	1	42	16	-58
pumping slot	1	<0.2	<0.1	>-0.3
pump	1	9	4	-13
BPM	1			
bellow	1	13	5	-18
flange gap	1	6	2.4	-8.5
Total geom.		70	25	-95
resistive (Cu)	6.1m	220	279	-542
resistive (AI)	6.1m	303	325	-660

$$\sigma_{z} = 25 \mu m$$

$$\sigma_{cond} = 5.8e + 7[\Omega^{-1} \cdot m^{-1}], \quad \tau_{relax} = 2.46e - 14[sec]$$

$$\sigma_{cond} = 3.66e + 7[\Omega^{-1} \cdot m^{-1}], \quad \tau_{relax} = 7.1e - 15[sec]$$

	Loss, V/pC	Spread, V/pC	Peak, V/pC
Gauss, cu/al	36/50	46/53	-89/108
Rect, cu/al	79/93	90/72	-256/243

Power Loss (Gaussian bunch)

$$N_{b} = 4000 [bunches]$$
$$f_{rep} = 10 [Hz]$$
$$q = 1 [nC]$$

$$P = N_b f_{rep} q^2 k_{loss}$$

Conclusion

- Loss and kick of the pumping slot are negligible
- Wake of the absorber is reduced by factor 2
- Resistive wake is dominant
- Non-smooth bunch shape (rectangular) increases the energy spread less than by factor 2