

Statistical properties of radiation in TTF2 (Genesis simulations)

Igor Zagorodnov BDGM, DESY 5.12.05

M.Dohlus

TTF2 – s2e

- W = wake of one TTF module
- W_1 = wake of LOLA structure
- TM = transverse matching to design optic

M.Dohlus

parameters

name	symbol	unit	value
energy	γ		886
energy spread	σ_{γ}		0.47
emmitance	ε _x ε _y	π mm-mrad	2.4 1.14
bunch charge	Q	nC	1
peak current	I _P	kA	1.3
undulator period	λ_{u}	cm	2.73
undulator parameter	a _u		0.896
quadrupole length	L _Q	cm	12.716
quadrupole gradient	G _F G _D	T/m	10.6 -9.1
section length	L _{sect}	m	4.45+0.75=5.2
total length	L _{total}	m	31.2
beta function (waist)	$egin{array}{c} \beta_{x,} \ \beta_{y,} \end{array}$	m	3.4 5.63

Parameters of the FEL theory

$$\lambda_s = \frac{\lambda_u}{2\gamma^2} \left(1 + a_u^2 \right) = 31.348 \text{ [nm]}$$

$$z_R = \frac{\pi w_0^2}{\lambda_s} = \frac{2\pi\sigma_r^2}{\lambda_s} = 1.64 \, [m]$$

Parameters of the FEL theory

Gain parameter

$$\Gamma_{3} = \left[\left(\frac{A_{JJ} \omega_{s} \theta_{l}}{c \gamma_{l}} \right)^{2} \frac{I_{P}}{2 \gamma I_{A}} \right]^{1/2} = 2.5$$

$$\Gamma_1 = \Gamma_3 B^{-1/3} = 1.56$$

Efficiency parameter

$$\rho_3 = \frac{c\gamma_l^2\Gamma_3}{\omega} = 5.4\text{e-}3$$

Diffraction parameter

$$B = \Gamma_3 \sigma_r^2 \frac{\omega_s}{c} = 4.1$$

Effective power of the input signal

$$P_{sh} = 3\rho_1 \frac{W_b}{N_c \sqrt{\pi \ln N_c}} = 20.3 \, [W]$$

Gain length*

$$L_g = L_{g0}(1 + \delta) \approx 0.767 \, [\text{m}]$$

Optimal beta-function

 $\beta_{opt} \approx 0.6 \,[\mathrm{m}]$

Saturation length

$$L_{sat} \approx 10 \div 20 L_{g0} = 8 \div 15 \,[\text{m}]$$

* E.L.Saldin et al./Optics Communications 235 (2004) 415-420

Genesis steady state simulation

$$L_{slippage} = 37 \mu m$$

$$L_{cooperation}$$
; $2L_g\lambda_s/\lambda_u = 1.76\mu m$

Genesis (SASE)

Probability distribution of energy in the radiation pulse (Genesis, N=170)

Spectrum of the radiation (Genesis, N=170)

	SSY*	Genesis
Energy, MeV	450	454
Bunch charge, nC	0.5-1	1
Current, kA	1.3-2.2	1.3
Emmitance,mm-mrad	1.5-3.5	2.4/1.4
Saturation length	18-22	~25
Energy in the rad. pulse	50-150	~60
Radiation pulse duration, fs	15-50	60
Radiation peak power, GW	2-4	3.8
Spectrum width, %	0.8	0.7

SSY*- E.L.Saldin et al, TESLA FEL 2004-06

FAST (E.L.Saldin et al., DESY 05-239)

Genesis

FAST (E.L.Saldin et al., DESY 05-239)

Genesis

Genesis

Genesis

FWHM = 0.7%

Genesis accuracy check

case1: slice width = $4\lambda_s$, N of particles / slice = 8192, N runs = 170

case 2: slice width = $2\lambda_s$, N of particles / slice = 16384, N runs = 17

Conclusions

- 1. The pulse energy is smaller by factor 2 compared to FAST simulations
- 2. The possible reasons:
 - higher energy chirp,
 - smaller width of the current pulse
 - including of intersections in the lattice
- 3. Other statistical properties are in good agreement
- 4. The impact of wakefields?