Start2End Simulations for

Micro–Bunching Experiments at FLASH

"reloaded" :-(

19.11.2007

Mathias Vogt (MPY)

- Two Slides of Theory...
- A Revised Set Up (thanx to N.G. & V.B.)
- Scans & Evaluation
- A New Candidate ...
- Double-Humps

A Simple Purely Longitudinal Model of Micro–Bunching (1)

- long. phasespace \mathbb{R}^2 : $v := (z, p_z)$
- ps-density $\Psi(z, p_z)$, $\int \Psi d^2v = 1$
- (linear!) projection operator \hat{Q} : $\Psi \mapsto \rho := \hat{Q}\Psi = \int \Psi \, dp_z$
- ultra-relativistic $\Rightarrow \rho(z) = \text{const}$, except in **BunchCompressor**
- cavity, space charge (any long. wake) :
 KICKS
- all kicks commute $\Leftrightarrow cav+SC$: $(z, p_z) \mapsto (z, p_z + cav(z) + (g_{sc} * \rho)(z))$ $g_{sc} * \rho := \int g_{sc}(z, z')\rho(z')dz'$
- collective kick : $K[\rho] = Id + \Delta[\rho]$: $(z, p_z) \mapsto (z, p_z + (g * \rho)(z))$ Property: $K[\rho_1 + \rho_2] = K[\rho_1] + \Delta[\rho_2]$ with $K^{-1}[\rho_1 + \rho_2] = K^{-1}[\rho_1] - \Delta[\rho_2]$

- BunchCompressor : (generalized) **DRIFT** with R_{56}/p_0 as "length"
- FEL w/o undulator := Cascade : $(ACC \rightarrow BC \rightarrow)^n \Rightarrow$ $D_n \circ K_n[\rho_{n-1}] \circ \dots D_1 \circ K_1[\rho_0]$ (FLASH : n = 2)
- ← all the former maps are measure preserving !!!

$$\Rightarrow \Psi_k = \Psi_{k-1} \circ K_k^{-1} [\hat{Q} \Psi_{k-1}] \circ D_k^{-1}$$

• \Leftarrow linear operator $\mathcal{M}[\rho]$: $\Psi \mapsto \mathcal{M}[\rho]\Psi := \Psi \circ K^{-1}[\rho] \circ D^{-1}$ $\Psi_k = \mathcal{M}[\hat{Q}\Psi_{k-1}]\Psi_{k-1}$

time-discrete Vlasov system, nonlinear integro-difference-eqn.

A Simple Purely Longitudinal Model of Micro–Bunching (2)

• Now assume we already now

 $\Psi_1:=\mathcal{M}[\hat{Q}\Psi_0]\,\Psi_0$ (Ψ_0 suff. smooth)

• ... and add a tiny modulation : $\Psi_0 \rightarrow \Psi_0 + \epsilon \Phi_0, \ \epsilon \ll 1, \ \int \Phi_0 \, d^2 v = 0$

$$\Rightarrow \qquad \begin{array}{l} \tilde{\Psi}_{1} := \\ \mathcal{M}[\hat{Q}(\Psi_{0} + \epsilon \Phi_{0})] \left(\Psi_{0} + \epsilon \Phi_{0}\right) \end{array} \qquad (*)$$

- HONLINEAR EVOLUTION!
- $\Leftarrow \text{ can lead to increasing amplitudes for}$ certain wavelengths \Rightarrow **GAIN** can be $\gg 1 \Rightarrow$ micro-bunching

Gain Functions:

 evolution eqn. (*) can in principle be completely studied numerically using so-called 2-D Perron–Frobenius codes (for PF see e.g. papers by Bassi, Ellison, Sobol, Venturini, Vogt, Warnock) (Gain Functions ctd.)

• M. Dohlus: quasi analytic model of modulation:

 $z \mapsto z/\Pi_c + \Re\{a(\delta p_z)e^{ikz}\} + c\delta p_z$ $p_z \mapsto p_0 + \chi z/\Pi_c + \Re\{b(\delta p_z)e^{ikz}\} + d\delta p_z$ with iteration procedure for all parameters for transport through Cavity, BunchCompressor and SpaceCharge \Leftarrow USED IN THIS STUDY !!!

- to linear order in ε, (*) gives

 (for smooth Ψ₀ and gain×ε ≪ 1)
 Ψ
 ¹ = Ψ₁ + εΦ₁ + O(ε²) with

 Φ₁ = M[QΨ₀]Φ₀-(∇Ψ₀·Δ[QΦ₀])oD⁻¹

 spectral analysis seems at least possible.
- treatment of short-wavelength modulations is hardly possible in 6-D collective simulations. However, indications for "micro-bunching" effects exist in S2E simulations

- BC2 : $\rho_2 = 1.76, 1.82 \text{m}$ (lattice: $\rho_2 = 1.62 \text{m}$) $R_{56}^{(2)} = -0.15, -0.14 \text{m}$ (lattice: -0.25m)
- BC3 : $\rho_3 = 5.7 \text{m} 7.7 \text{m}$ (lattice: $\rho_3 = 7.5 \text{m}$) $R_{56}^{(3)} = -0.09 \text{m} - -0.05 \text{m}$ (lattice: -0.05m)

ϕ_1	ϕ_2	ϕ_3	ϕ_4	ϕ_5	
(gun)	ACC1.1	ACC1.2-4	ACC1.5-8	ACC2&3	
-0.55°	-90° - -105°	0°	-4° , -5°	0° - -15°	with long. Gaussian
	VB!!	accel.	corr. chirp	extra chirp	
fixed	$DONE \Rightarrow -96^{\circ}$	fixed	scan	scan	

• I(z) moderately large over

sufficiently large length

• ... separated from spike !

• transv. ps: not first priority

spread-sheet by M.Dohlus)

Goal of S2E Scans :

• check μ -bunching gain (model &

Evaluation :

- scan of ϕ_2 (see talk from 24.09.07) **not** affected by revised setup \Rightarrow $\phi_2 = -96^{\circ}$
- for different choices of ϕ_4 and ρ_2
- look at
 - length scales supporting various currents as function of ϕ_5 and ρ_3

A New Candidate ...

Is This Micro-Bunching in S2E-Simulations ?

Double-Humped Densities

After BC3: 2 Gaussians , 3σ separated 10 sub-ensembles / 500 part/bin (smooth 1.5)

Summary

ϕ_1	ϕ_2	ϕ_3	ϕ_4	$ ho_2$	ϕ_5	$ ho_3$
(gun)	ACC1.1	ACC1.2-4	ACC1.5-8	BC2	ACC2&3	BC3
-0.55°	-96°	0°	-4°	1.765m	-15°	6.2m
	VB	accel.	corr. chirp		extra chirp	

• Proposed set of parameters

- \Rightarrow decent *z*-region with high current outside spike 50 μ m with I > 500A, 220 μ m with I > 300A
- \Rightarrow decent transcerse phase space
- \Rightarrow no strong mixing in high–*I* region
- \Rightarrow estimated gain $>1\cdot10^{+4}$ for 10 $\mu{\rm m}<\lambda<$ 100 $\mu{\rm m},$ $>1\cdot10^{+3}$ for $\lambda<$ 200 $\mu{\rm m}$
- \bullet proposed $\mu{\rm -bunching}$ "switch" : vary ϕ_5 from 0° to -15°
- possibly try double-humped initial densities from cathode