Start2End Simulations for

Micro–Bunching Experiments at FLASH

24.09.2007

Mathias Vogt (MPY)

lots of input from: Donghoon Kuk, B.Beutner, W.Decking, M.Dohlus, K.Flöttmann, L.Fröhlich, S.Meykopff, T.Limberg, I.Zagorodnov,

- Set Up
- Scans
- A Candidate ...

Goal of S2E Scans :

- *I*(*z*) moderately large over sufficiently large length
- ... separated from spike !
- transv. ps: not first priority
- ... but transport should be save

Evaluation :

- scan ϕ_2 first
- fix ρ_2
- look at

length scales supporting various currents as function of ϕ_2 and ρ_3 (watch the black "L" !!)

$\phi_2/^{\circ}$	ρ_3/m	$L_{>300.4}/\text{mm}$	$L_{>4004}/\text{mm}$	$L_{>5004}/\text{mm}$	$I_{\rm posk}/kA$	$\epsilon_{\pi}^{n}/\mu m$	$\epsilon_{u}^{n}/\mu m$
-94	4.4	0.05	0.00	0.00	0.70	3.507	3.138
-96	4.4	0.20	0.05	0.00	0.75	3.716	3.402
-98	4.4	0.20	0.05	0.00	0.65	4.152	3.801
-100	4.4	0.25	0.10	0.05	1.15	4.784	4.443
-92	4.2	0.10	0.00	0.00	0.75	3.334	2.942
-94	4.2	0.20	0.05	0.00	0.80	3.525	3.136
-96	4.2	0.20	0.15	0.05	0.90	3.738	3.400
-98	4.2	0.25	0.15	0.05	0.75	4.131	3.800
-100	4.2	0.40	0.25	0.10	1.35	5.005	4.441
-94	4.0	0.20	0.00	0.00	0.90	3.610	3.134
-96	4.0	0.30	0.10	0.00	1.10	3.875	3.398
-98	4.0	0.20	0.10	0.05	0.95	4.090	3.797
-100	4.0	0.20	0.10	0.05	1.50	5.838	4.438
-92	3.8	0.30	0.10	0.00	1.10	3.631	2.939
-94	3.8	0.30	0.10	0.05	1.05	3.884	3.132
-96	3.8	0.30	0.20	0.10	1.50	4.335	3.393
-98	3.8	0.25	0.15	0.10	1.45	4.305	3.793
-100	3.8	0.25	0.15	0.10	2.30	7.591	4.434
-90	3.6	0.30	0.05	0.00	1.30	3.983	2.770
-92	3.6	0.35	0.15	0.10	1.45	4.290	2.937
-94	3.6	0.30	0.20	0.10	1.65	4.770	3.128
-96	3.6	0.35	0.15	0.05	1.90	5.903	3.389
-98	3.6	0.25	0.20	0.10	3.00	6.019	3.789

finally... A Gain Curve

- For $\phi_2=-96^\circ$, $\rho_2=2.565 \mathrm{m},$ and $\rho_3=3.8 \mathrm{m}$:
- SliceAnalysis : Fit $\langle \delta p_z \rangle(z)$ to straight line \Rightarrow chirp $h = \frac{d \langle \delta p_z \rangle(z)}{p_0 dz}$
- chirps fitted from slice analysis \Rightarrow

		BC2	BC3	$(\rightarrow dogleg)$
•	h	5.5/m	3.1/m	6.8/m
	R_{56}	-0.1m	-0.034m	$5\cdot 10^{-4}{ m m}$
	$\rightarrow C$	2.25	1.12 (?)	0.996

• insert into a spreadsheet (by M.Dohlus) \Rightarrow

Alternative Gain Curve

- everything as before ...
- IGNORE fitted chirps \rightarrow guess C from $\frac{I_{\text{final}}}{I_{\text{initial}}} \Rightarrow$

		BC2	BC3	$(\rightarrow dogleg)$
•	R_{56}	-0.1m	-0.34m	$5\cdot 10^{-4}{ m m}$
	$\rightarrow C$	2.25	2.6	0.996

• insert into a spreadsheet (by M.Dohlus) \Rightarrow

