Dispersion–Free Steering (\rightarrow **BBA)**

for the SASE Undulators of the XFEL

(Work in Progress !)

23.02.2009

Mathias Vogt (DESY–MPY) lots of input from: W.Decking, P.Castro, B.Faatz,...

- Why BBA
- What the Heck is Dispersion–Free Steering ?
- The Model
- Preliminary Results

Orbit Requirements for the SASE Process

- Resonant interaction of charged particle and undulator radiation \Rightarrow Particle orbit and radiation cone ($\sim 1/\gamma$) must overlap
- $\rightarrow\,$ Beam orbit excursion in undulator $\ll\,$ rms beam envelope ightarrowlongitudinal scale \sim gain length

- Strong orbit fluctuations
- \Rightarrow overlap only over short ranges \ll radia- \Rightarrow overlap only over most of undulator >tion length
- \Rightarrow weak (or no) SASE signal

GOOD ORBIT :

- Flat orbit
- radiation length
- \Rightarrow potentially: "saturation"

- Target for orbit : rms (over \sim 20m) $< 3\mu$ m
- \Rightarrow BBA will be tricky (mainly due to large unknown offsets)
- Option-1 : try Dispersion-Free Steering (dispersion measurement only needs a difference orbit!)

- misaligned quads
 ⇒perturbed orbit
- initial quad misalignment & BPM offsets $\approx 300 \mu m$ (?)
- $\Rightarrow beam-based-alignment$ (=BBA) necessary
 - in SASE-1 : high resolution cavity BPMs:

 $\mathrm{res}
ightarrow 1 \mu \mathrm{m} - 3 \mu \mathrm{m}$

- correctors=quad movers
- in T4 : most likely only: res $\rightarrow 20\mu m - 50\mu m$

 $\{D_i\}_{1 \le i \le M}$

+ and

- + measured $\vec{X} \leftarrow \text{offset} +$ statistical fluctuations
- + **measured** \vec{D} \leftarrow statistical fluctuations only
- \nearrow causality in beam line : each upper right $\rightarrow 0$
- 2M conditions for N corrector settings \Rightarrow \nearrow

overdetermined system : 7

 $w/o \text{ errors} \rightarrow \text{ conditions linearly dependent}$ w/ errors \rightarrow least squares solution \rightarrow SVD

Dispersion–Free Steering (2)

- Introduce weight w $(\mathbf{0} \rightarrow \text{orbit-only}, \mathbf{1} \rightarrow \text{dispersion-only})$ $\begin{array}{c} (\mathbf{v} \rightarrow \text{ orbit-only, } \mathbf{i} \rightarrow \text{ dispersion-only)} \\ \hline \begin{pmatrix} (1-w)\vec{X} \\ w\vec{D} \end{pmatrix} = \begin{pmatrix} (1-w)\underline{O} \\ w\underline{D} \end{pmatrix} \vec{K} \end{array} \begin{array}{c} \mathbf{assuming NO \text{ orbit/dispersion from upstream SASE-1 !} \\ \mathbf{o} \text{ iff } \vec{C} \equiv \vec{S}_i \equiv \vec{\Delta}_i \equiv 0 \ \forall i \end{array}$
- $\nearrow \vec{\Xi} \in \mathbb{R}^{2M} :=$ "real" orbit/dispersion, The "pseudo-inverse" \underline{A}^* can be $\mathcal{A} \in \mathbb{R}^{2N \times M} :=$

combined orbit dispersion response matrix

- *i*-th Measurement: add systematic (const \vec{C}) and statistical $(\vec{S_i})$ errors $\vec{\xi_i}(w) = \underline{\mathcal{A}}(w)\vec{K_i} + \vec{C} + \vec{S_i}$
- and iterate corrected dipole kicks $\rightarrow \vec{\Phi}_i$ with error $\rightarrow \vec{\Delta}_i$ $\vec{K}_i = \vec{K}_{i-1} - \vec{\Phi}_i - \vec{\Delta}_i$

How to compute $\vec{\Phi}_i$?

- or shorthand: $\vec{\Xi}(w) = \underline{A}(w) \quad \vec{K}$ $(\& assuming \underline{A} is completely known)$ $\Rightarrow \vec{\xi} \equiv \vec{\Xi} = \underline{A}\vec{K} is fully redundant, i.e.$ $\exists A^* \in \mathbb{R}^{M \times 2N} \text{ with } \vec{K} = \vec{\Phi} := A^*\vec{\Xi}$ $\exists \mathcal{A}^* \in \mathbb{R}^{M imes 2N}$ with $\vec{K} \equiv \vec{\Phi} := \mathcal{A}^* \vec{\Xi}$
 - computed using a Singular Value Decomposition (SVD)
 - In fact SVD + " τ -regularization" allow some control over correcting the highly correlated (= potentially "real") orbit/dispn. components rather than the weakly correlated (= contaminated) components

 \Rightarrow . . .

SVD + for DispFree Steering

$$\underline{\mathcal{A}} = \underline{\mathcal{U}} \quad \underline{\operatorname{diag}}(\{\sigma_k\}) \quad \underline{\mathcal{V}}^{\mathrm{T}}$$

- $\underline{\mathcal{U}} \in \mathbb{R}^{2M \times N}$, $\underline{\mathcal{U}}^{\mathrm{T}} \underline{\mathcal{U}} = \underline{1}_{N \times N}$ $\rightarrow \underline{\mathcal{U}}^{\mathrm{T}} \underline{\vec{\Xi}} := \text{orthogonal orbit/dispn mode}$
- $\underline{\mathcal{V}} \in \mathbf{O}(N) \to \underline{\mathcal{V}}^{\mathrm{T}} \vec{K} := \text{orth. } knob \text{ for mode}$
- $\{\sigma_k\}_{1 \le k \le N}$, $\sigma_k \ge 0$: singular values \rightarrow "knob-strengths"

• for non-degenerate phase advances $\Rightarrow \underline{A}$ has full rank $\Leftrightarrow \sigma_k > 0 \forall k$

$$\Rightarrow \underline{\mathcal{A}}^* := \underline{\mathcal{V}} \underline{\operatorname{diag}}(\{\sigma_k^{-1}\}) \, \underline{\mathcal{U}}^{\mathrm{T}}$$

• if system is underdetermined \Rightarrow solution of $\vec{\Xi} = \mathcal{A} \vec{K}$ is

$$\vec{K} \in \vec{K}_{\text{part}} + \ker(\underline{\mathcal{A}})$$

- $\Rightarrow \text{SVD gives "minimal"} \\ \text{solution} : \left\| \underline{\mathcal{A}}^* \ \vec{\Xi} \right\|_2 = \min$
- if system is overdetermined ⇒solution ∃ only in the "least square" sense

$$\Rightarrow \text{SVD yields solution} \\ \text{with minimal residue :} \\ \left\| \vec{\Xi} - \underline{\mathcal{A}} \left(\underline{\mathcal{A}}^* \vec{\Xi} \right) \right\|_2 = \min$$

 τ -regularization for DispFree Steering

• What if some $\sigma_i = 0$???

$$\rightarrow$$
 just redefine $\underline{\mathcal{A}}^* := \underline{\mathcal{V}} \underline{\operatorname{diag}}(\{(\sigma_k > 0)^{-1}, 0 \ldots\}) \underline{\mathcal{U}}^{\mathrm{T}}$

- \Rightarrow yields least square solution !
- MORE GENERAL : *condition* of \underline{A} : cond (\underline{A}) := $\frac{\max_i \{\sigma_i\}}{\min_{i,\sigma_i > 0} \{\sigma_i\}}$
 - \rightarrow large cond means that solutions \vec{K} of linear system $\underline{A} \vec{K} = \vec{\Xi}$ strongly depend on small variations (\leftarrow errors!) of $\vec{\Xi}$
- \rightarrow to improve (=decrease) condition : set $\sigma_j \rightarrow 0$, $\forall \sigma_j < \tau$ with some regularization parameter τ
- ... and redefine $\underline{\mathcal{A}}^*(\tau) := \underline{\mathcal{V}} \underline{\operatorname{diag}}(\{(\sigma_k > \tau)^{-1}, 0 \dots\}) \underline{\mathcal{U}}^{\mathrm{T}}$
- ⇒ for Dipersion–Free Steering :
 ⇔ use only highly correlated orbit/dispn modes !!!
- & ignore stronlgy contaminated orbit/dispn modes !!!

 \Rightarrow correct orbit/dispn with:

$$\Phi_i = \underline{\mathcal{A}}^*(\tau) \, \vec{\xi}_{i-1}$$

Model of BBA for SASE-1

- no orbit/dispn from upstream SASE-1
- PERT: 33 misaligned quads in SASE-1
- CORR: 33 quad-movers in SASE-1
- 51 BPMs : 33 in SASE-1 + 18 in T4 upstream dispersive section
- ORM & DRM w.r.t. quadmisalignment ← mad-8 ("lmad")
- all errors $(\vec{K}_0, \vec{C}, \vec{S}_i, \vec{\Delta}_i)$: independent Gaussian RV

- initial rms quad misalignment : $300 \mu m$
- rms BPM–offset : 200μ m
- rms BPM statistical error in SASE-1 : $1\mu m$
- * rms BPM statistical error in T4 : 50 μ m
- * rms mover error : 1μ m
- "*" means : **as a starting point** take BPMs in T4 as good as in SASE-1 and no mover errors
- correction method (A) : global, variable gain, weight, τ : $\vec{\Phi}_i = g\underline{A}^*(w, \tau) \vec{\xi}_{i-1}$
- correction method (B) : local (*l* to *m*), variable gain, weight, const $\tau = 0$: $\vec{\Phi}_i \Big|_{l,m} = g\underline{A}^*(w, 0) \Big|_{l,m} \vec{\xi}_{i-1}$

Simulation Parameters (1-st try)

- initial quad misalignment : $\vec{\Delta}_0$ -rms : 300 μ m
- systematic offsets : $\vec{C}|_{\vec{X}}$ -rms : 200 μ m ; $\vec{C}|_{\vec{D}}$ -rms : 0 \leftarrow difference orbit!
- resolution : $\vec{S}_i \Big|_{\vec{X}}$ -rms = $\vec{S}_i \Big|_{\vec{D}}$ -rms : 1 μ m \Leftarrow only 3% dp/p acceptance \rightarrow multi-shot average to reduce $\vec{S}_i \Big|_{\vec{D}}$ -rms

• mover errors :
$$\vec{\Delta}_i = 0$$
, $i > 0$

Correction Sequence v001a :

Correction Sequence v003a :

step	w	$I_{\max}^{\text{s.v.}}$	g
1	0.00	4	1.0
2	0.80	22	1.0
3	0.95	22	1.0
4	1.00	27	1.0

step	w	$I_{\max}^{\mathrm{s.v.}}$	g	
1	0.000	33*	1.0	
2	0.950	33*	1.0	
3	0.900	21	1.0	
4	0.999	4	1.0	

*: **all** singular values !

Singular Values for chosen w / v001a

Singular Values (CorrSeq v001a)

Finding the Right $I_{\max}^{s.v.}$ for Each Step / v001a orbit

estimated rms-orbit vs. max number of used S.V. / CorrSeq v001a / seed x

Finding the Right $I_{\max}^{s.v.}$ for Each Step / v001a dispn

estimated rms-dispn vs. max number of used S.V. / CorrSeq v001a / seed x

Singular Values for chosen w / v003a

Singular Values (CorrSeq v003a) 10000 w=0.000 w=0.950 w=0.990 w=0.999 - - - -1000 100 ю 10 1 0.1 5 10 15 20 30 25 0 $1 \le i \le M_{bbm}$

Finding the Right $I_{\max}^{s.v.}$ for Each Step / v003a orbit

estimated rms-orbit vs. max number of used S.V. / CorrSeq v003a / seed x

Finding the Right $I_{\max}^{s.v.}$ for Each Step / v003a dispn

estimated rms-dispn vs. max number of used S.V. / CorrSeq v003a / seed x

Initial Orbits / all seeds

Result of Correction Sequence v001a

Result of Correction Sequence v001a (BEST)

Result of Correction Sequence v003a

Result of Correction Sequence v003a (BEST)

Parameters :

•	initial	quad	misal.	:	$ec{\Delta}_0$ -rms :	$300 \mu m$	
---	---------	------	--------	---	-----------------------	-------------	--

- systematic offsets : $\vec{C}\Big|_{\vec{X}}$ -rms : 300 μ m
 - but $\vec{C}\Big|_{\vec{D}}$ -rms : 0 \leftarrow difference orbit!
- resolution : $\vec{S}_i \Big|_{\vec{X}}^{\text{SASE1}}$ -rms : $1\mu \text{m}$ $\rightarrow \vec{S}_i \Big|_{\vec{X}}^{\text{T4}}$ -rms : $20\mu \text{m} \leftarrow \text{cheaper BPMs}$ $\rightarrow \vec{S}_i \Big|_{\vec{D}}^{\text{SASE1}}$ -rms : $20\mu \text{m} \leftarrow \text{only 3\% dp/p}$
 - $\rightarrow \vec{S}_i \Big|_{\vec{D}}^{\text{T4}}$ -rms : 400 μ m \Leftarrow acceptance & BPMs
- mover errors : $\vec{\Delta}_i$ -rms : 1μ m, i>0

step	range	w	$I_{\max}^{\text{s.v.}}$	g
1	1 — 33	0.00	5	1.0
2	1 — 33	0.80	17	1.0
3	1 — 33	0.95	3	1.0
4	1 — 33	0.95	22	1.0
5	1 — 33	0.99	2	1.0
6	1 — 33	1.00	5	0.5
7	1 — 33	1.00	5	0.5
8	1 — 33	1.00	3	0.5
9	1 — 10	1.00	10*	0.5
10	8 — 17	1.00	10*	0.5
11	15 — 24	1.00	10*	0.5

CorrSeq v010 (1-st attempt = yesterday!!) :

*: **all** singular values !

A Slightly More Expensive Example ...

CorrSeq v020 (2-nd attempt = today!!) :

$ullet$ initial quad misal. : $ec{\Delta}_0$ -rms : 300 μ m
• systematic offsets : $\vec{C}\Big _{\vec{X}}$ -rms : 300 μ m
but $\vec{C}\Big _{\vec{D}}$ -rms : $0 \leftarrow \text{difference orbit!}$
• resolution :
$\rightarrow \vec{S}_i \Big _{\vec{X}}^{\text{SASEI} + 1 - \text{st 5 m 14}} - \text{rms} : 1 \mu \text{m}$
$\rightarrow \vec{S}_i \Big _{\vec{X}}^{\text{T4 (rest)}}$ -rms : 20 μ m
$\rightarrow \vec{S}_{i} \Big _{\vec{D}}^{\text{SASE1} + 1 - \text{st 5 in T4}} -\text{rms} : 20 \mu \text{m}$
$\rightarrow \vec{S}_i \Big _{\vec{D}}^{\mathrm{T4 (rest)}}$ -rms : 400 μ m
$ullet$ mover errors : $ec{\Delta}_i=1$, $i>0$

step	w	$I_{\max}^{\rm s.v.}$	g
1	0.00	5	1.0
2	0.80	10	0.5
3	0.80	7	0.5
4	0.80	18	0.5
5	0.80	18	0.5
6	0.80	11	0.5
7	0.80	19	0.5
8	0.80	19	0.7
9	0.95	10	0.5
10	0.95	18	0.5
11	0.95	8	0.5

Parameters :

cers :

All but 1-st 5 BPMs in T40 : $20 \times$ worse Resolution (2-nd attempt = today!!)

<u>TODO :</u>

- Larger parameter space to be scanned (including varying of BPM-distribution)
- *y*-plane !!!! & SASE-2,-3,...
- Include deviations of actual (=unknown) ODRM from design-ODRM (=known)
- Include x/y-coupling
- Implement also uniform RVs, etc
- Implement drifts (time domain correlations)
- Include non-linear dispersion into application of the kicks

SUMMARY :

• Work in progress!!

- Even with state of the art diagnostics : orbit constrains for SASE very tight !
- In particular : initial misalignment and BPM-offsets are tough
- Strategy : dispersion-free steering with variable weighting between orbit and dispersion, variable *τ* (→strongly vs. weakly correlated modes) and variable gain.
- Result so far : with realistic tolerances and reduced BPM-resolution upstream of the undulators the constraints <u>seem</u> extremely hard to meet!