

The beam already knows what emittance it should deliver, we just have to measure it !

Content:

- measurement setup
- cathode laser
- different guns
- longitudinal phase space
- transverse projected emittance
- cathode studies
- future upgrades of the facility

Colleagues actively participating in measurements / new design:

- DESY, Zeuthen site:
F. Stephan, J. Bähr, C. Boulware, H.J. Grabosch, Y. Ivanisenko*, S. Khodyachykh**, S. Korepanov,
M. Krasilnikov, A. Oppelt ${ }^{* * *}$, B. Petrosyan,
S. Riemann, S. Rimjaem, K. Rosbach,
A. Shapovalov****, T. Scholz, R. Spesyvtsev****,
L. Staykov
- DESY, Hamburg site:
K. Flöttmann, J.H. Han, S. Lederer, S. Schreiber
- BESSY Berlin:
T. Kamps, F. Marhauser******, R. Ovsyannikov, D. Richter, A. Vollmer
- CCLRC Daresbury:
D.J. Holder, B.D. Muratori
- INRNE Sofia:
G. Asova, K. Boyanov, I. Tsakov
- INR Troitsk:
A.N. Naboka, V. Paramonov, A.K. Skassyrskaia
- LAL Orsay:
T. Garvey***
- LASA Milano:
P. Michelato, L. Monaco, D. Sertore
- LNF Frascati:
D. Alesini, L. Ficcadenti
- MBI Berlin:
G. Klemz, I. Will
- TU Darmstadt:
W. Ackermann, E. Arevalo, W. Müller, S. Schnepp
- Uni Hamburg:
J. Rönsch
- YERPHI Yerevan:
L. Hakobyan
* on leave from IERT Kharkov,
** now at Siemens Medical Solutions
*** now at PSI, Villingen,
**** on leave from MEPHI, Moscow,
***** on leave from NSCIM, Kharkov, ****** now at JLAB, Newport News
- Acknowledgements: R. Brinkmann, U. Gensch, E. Jaeschke, L. Kravchuk, V. Nikoghosyan, C. Pagani, L. Palumbo, J. Rossbach, W. Sandner, S. Smith, T. Weiland, G. Wormser

GEMEINSCHAFT

Present layout of PITZ

This setup was used for the measurements to be presented:

Present layout of PITZ

Photo cathode laser

Schematics of the diodepumped Nd:YLF photo cathode laser system

Beamline to photo cathode

Photo cathode laser properties

- Iongitudinal profile:

FWHM=20.22ps; rt1=6.58ps; rt2=6.67ps; FTmod=6.52\%

- energy stability:

- transverse profile:

- pointing stability:

Guns, Gradients, Dark Currents

- Gun 3.1 -

characterized @ ~40MV/m in Oct.'06
\rightarrow spare gun for FLASH

- Peak and average power:

- Dark current:

- Gun 3.2 -
characterized @ ~60MV/m in summer '07
\rightarrow first experience with long RF at $60 \mathrm{MV} / \mathrm{m}$
- Peak and average power:

- Dark Current:

Longitudinal phase space for gun3.2

Momentum and momentum spread downstream of the gun:

- possible reason:

Problem with maximum momentum:

- measured momentum lower than expected from RF power readings
\rightarrow power measurements

Projected Emittance Measurements:

Slit Scan Technique

$$
\mathcal{E}_{x, n}=\beta \gamma \cdot X_{r m s} \cdot X_{r m s}^{\prime}
$$

$X_{r m s}$-RMS size of full beam at EMSY station (e.g. $\mathrm{z}=4.3 \mathrm{~m}$)
$X_{r m s}^{\prime}=\frac{1}{L} \sqrt{\sum_{i=1}^{n} w_{i} \cdot\left(X_{r m s}^{\text {beamlet }}\right)_{i}^{2} / \sum_{i=1}^{n} w_{i}}$ - uncorrelated local divergence
$X_{\text {rms }}^{\text {beamlet }}-\mathrm{RMS}$ size of the beamlet image
L - distance from slit location to screen for beamlets

- Current standard procedure:
- take 11 equidistant beamlets over the full beam size
- use $10 \mu \mathrm{~m}$ slit opening
- ultimate resolution (current setup):
$\rightarrow 36 \mu \mathrm{~m} \times 15.4 \mu \mathrm{rad}$
- use camera with 12 bit signal depth for beamlet measurements

Emittance results October 2006

Gun gradient: ~ 43MV/m Gun phase: $\Phi^{\text {gun }}=\Phi_{\text {ref }}^{\text {gun }}-2 \mathrm{deg}$ Momentum from gun: $\sim 5.0 \mathrm{MeV} / \mathrm{c}$

Booster phase: $\Phi^{\text {booster }}=\Phi_{\text {ref }}^{\text {booster }}-5 \mathrm{deg}$ Total beam momentum: $12.8 \mathrm{MeV} / \mathrm{c}$

$\Phi^{\text {gun }}=\Phi_{\text {ref }}^{\text {gun }}-2$ deg $\quad I_{\text {main, }}[A]$
$\Phi^{\text {booster }}=\Phi_{\text {ref }}^{\text {booster }}-15 \mathrm{deg}$

Expectations for $60 \mathrm{MV} / \mathrm{m}$

What`s new in new ASTRA (spring `07)?

- solved convergence problem of space charge routine for very short bunches
\rightarrow important during emission,
- included new parameter to control time steps
\rightarrow important when bunch just left cathode

Emittance for 1 nC and $60 \mathrm{MV} / \mathrm{m}$

preliminary analysis

Cathode: \# 90.1
Gun gradient: ~ $60 \mathrm{MV} / \mathrm{m}$
Gun phase: $\phi^{\text {gun }}=\Phi \substack{\text { gun } \\ \text { ref }}$
Momentum from gun: ~6.44 MeV/c
Booster phase: $\Phi^{\text {booster }}=\Phi_{1}^{\text {beosser }}$ ref
Total beam momentum: 14.5 MeV/c
\rightarrow for $\sim 60 \mathrm{MV} / \mathrm{m}$ we obtained

$\varepsilon_{\mathrm{x}, \mathrm{n}}$	$=1.25$	$\pm_{0.19} \mathrm{~mm}$	mrad
$\varepsilon_{\mathrm{y}, \mathrm{n}}$	$=1.27$	$\pm_{0.18}$	mm
mrad			

for 100 \% RMS emittance!

\rightarrow good agreement with prediction from ASTRA
x-x'-phase space distribution for the best emittance measurement, purely reconstructed from subsequent beamlet measurements:

Emittance calculated purely from beamlet measurements, 100 \% of data
$\rightarrow \varepsilon_{\mathrm{n}}=1.1 \mathrm{~mm}$ mrad

Cut at 5\% of max. amplitude (i.e. 6.5\% of "charge") [reasons: noise, gain, sensitivity, bit depth, ...]
$\rightarrow \varepsilon_{\mathrm{n}}=0.69 \mathrm{~mm} \mathrm{mrad}$ projected emittance is reduced by 37% !!
ASTRA: - 5% in particles $\rightarrow \mathbf{- 3 8 \%}$ in proj. emittance
For 95% RMS $\rightarrow \varepsilon_{x, y, n} \approx 0.8 \mathrm{~mm}$ mrad

XPS investigations on photo cathodes

Te 3d spectrum for fresh cathode \#90.1

Te 3d spectrum for used cathode \#92.1
fresh cathode:

- dominant peaks for both spin-orbit couplings corresponding to $\mathrm{Te}^{-2}\left(\mathrm{Cs}_{2} \mathrm{Te}\right)$
- small amounts of Te^{0}
used cathode:
- dominant peaks for both spin-orbit couplings corresponding to Te^{0} (metallic tellurium)
- only small amounts of $\mathrm{Te}^{-2}\left(\mathrm{Cs}_{2} \mathrm{Te}\right)$

Confirmation from survey scan:
Te^{+6} visible $\left(\mathrm{TeO}_{3}\right)$ on fresh cathodes but no oxidized states on used cathodes
\rightarrow QE degradation during operation most probable related to change in chemical composition
\rightarrow transition from $\mathrm{Cs}_{2} \mathrm{Te}$ to metallic Te

Thermal emittance measurements

$$
\left.\begin{array}{l}
\boldsymbol{\varepsilon}_{t h}=\boldsymbol{\sigma}_{\text {cathode }} \sqrt{\frac{2 E_{\text {kin }}}{3 m_{0} c^{2}}} \\
\boldsymbol{\varepsilon}_{\text {meas }} \approx \sqrt{\boldsymbol{\varepsilon}_{t h}^{2}+\boldsymbol{\varepsilon}_{S C}^{2}+\boldsymbol{\varepsilon}_{R F}^{2}}
\end{array}\right\}
$$

Error bars not small, but

- there is increasing Ekin with gradient at cathode!
- different cathodes can behave differently !
- Ekin $\approx 1.4 \mathrm{eV}$ @ $\mathrm{E}_{0}=60 \mathrm{MV} / \mathrm{m} \rightarrow 2 \times$ larger than model \rightarrow for $\sigma_{\text {cathode }}=0.35 \mathrm{~mm} \rightarrow \boldsymbol{\varepsilon}_{\text {th }}=0.47 \mathrm{~mm}$ mrad ($\sim 50 \%$)

Future upgrades at PITZ

this autumn: • install improved laser system (20 ps FWHM, rise/fall time $\leq 2 \mathrm{ps}$)

- install improved dispersive arm downstream of booster (HEDA1)
\rightarrow slice emittance measurements
- condition new gun cavity to $\mathbf{6 0} \mathbf{~ M V / m}$

2008: - install new CDS booster and tomography section

- start experimental optimization for European XFEL baseline parameters

- Dark current from cavity 3.2: although dark current was reducing during conditioning/operation \rightarrow still very high at $60 \mathrm{MV} / \mathrm{m}$. We assume that one main reason is a fabrication error which did not happen again at later cavities. New cavity 4.2 was cleaned with CO_{2} and conditioning will start on a separate test stand in November 2007.
- Life time of photo cathodes: only up to ~ 1 week in last run period. Reason not clear. Might be related to high level of dark current, may be in addidion related to Flour impurities in the vacuum system.
- Comparison simulation \leftrightarrow measurements: although value for absolute minimum emitttance agrees very well, dependencies on operation parameters (e.g. energy gain in booster) are very different. \rightarrow studies have to be continued.
- Laser system: up to now rise/fall time of 6-8 ps was possible \rightarrow one of the reasons why tails in distributions dominate emittance number. This autumn, a new laser system will be installed which should allow 2 ps rise/fall time. Stability and usability of the new system has to be observed during real operation.
- RF system (IIrf and total power):
- up to now only feed-forward is possible (no regulation) \rightarrow instabilities.
- currently, $60 \mathrm{MV} / \mathrm{m}$ only reached with saturated klystron \rightarrow no hatspace for regulation.
\rightarrow Several approaches ongoing to allow IIrf regulation and higher total power at the gun. (klystron with > 10 MW ???)
- "Core emittance": to measure / optimize it \rightarrow particles in tails of PHASE SPACE distributions have to be cut (not in coordinate space). This measurements require very long \& stable measurement time \rightarrow can only be done for individual cases at the moment. Next year we plan to install a tomography module which allows phase space tomography as standard measurement operation.
- Slice emittance: what finally counts is slice emittance in high current part of electron bunch. According to our current knowledge, the only way to measure it with the required accuracy is the usage of an RF deflector. E.g. also LCLS is intensively using their RFD to characterize their injector. Therefore, the development of the RFD for PITZ (e.g. pre-test of XFEL version) should be continued.

GEMEINSCHAFT

Outlook

- Optimize injector for XFEL baseline parameters:

Ingriedients:

- laser upgrade this year
- the installation of the CDS booster next year
- extension of the diagnostics beamline now and in next year(s)
\rightarrow we will be able to study the evolution of the emittance for the full
XFEL baseline parameters:
- do experimental optimization
(full variation of experimental parameters, systematic cathode studies, ..., 1-2 years)
- in parallel also requires further development of the simulations.
| GEMEINSCHAFT

Summary

- Gun3.1 characterized at $\sim 40 \mathrm{MV} / \mathrm{m}$:
- operated with up to $3.5 \mathrm{MW}, 900 \mu \mathrm{~s}$ RF, 10 Hz
$-\varepsilon_{\mathrm{x}, \mathrm{n}}=1.32 \pm 0.11 \mathrm{~mm} \mathrm{mrad}$
$\varepsilon_{y, n}=1.43 \pm 0.17 \mathrm{~mm} \mathrm{mrad}$
@1nC, (100\% RMS)
- Gun3.2 characterized at $\sim 60 \mathrm{MV} / \mathrm{m}$:
- operated with up to 6.7MW, $140 \mu \mathrm{~s}$ RF, 10 Hz
$\begin{array}{rlll}-\varepsilon_{x, n} & =1.25 & \pm 0.19 & \mathrm{~mm} \\ \varepsilon_{y, n} & =1.27 & \pm 0.18 & \mathrm{~mm} \\ \mathrm{mrad}\end{array} \quad$ @1 nC , (100\% RMS)
$\varepsilon_{\mathrm{y}, \mathrm{n}}=1.27 \quad \pm 0.18 \mathrm{~mm} \quad \mathrm{mrad}$
\rightarrow for 95%-RMS: $\varepsilon_{x, y, n} \approx 0.8 \mathrm{~mm}$ mrad !!
\rightarrow first demonstration of emittance required for European XFEL
- thermal emittance: Ekin $\approx 1.4 \mathrm{eV}$
$\rightarrow \boldsymbol{\varepsilon}_{\mathrm{th}}=0.47 \mathrm{~mm} \operatorname{mrad}(\sim 50 \%)$
- observed change of chemical composition of $\mathrm{Cs}_{2} \mathrm{Te}$ cathodes using XPS
- upgrades at PITZ are ongoing \rightarrow e.g. new laser in 2007

