Achieving 0.01 deg. Phase Stability

- Short term (within in 1 ms pulse)
- medium term (pulse to pulse, several seconds)
- long term (thermal time scale, minutes to hours)
- Sources of cavity field perturbations
 - Lorentz force detuning
 - Microphonics
 - Beam loading
 - other (electronic noise in field detectors, phase noise and drifts of phase reference, ripple of klystron power supply, etc.)

RF Regulation TESLA Cavity (Simulation)

Measured Stability in ACC 2+3

Field Regulation at VUV-FEL

Field Regulation at the VUV-FEL

Field Regulation at VUV-FEL

Drift ACC1 (cryomodule before BC) at TTF

Phase stability with pyro-detector

Control Choices (1)

- Self-excited Loop (SEL) vs
 Generator Driven System (GDR)
- Vector-sum (VS) vs individual cavity control
- Analog vs Digital Control Design
- Amplitude and Phase (A&P) vs
 In-phase and Quadrature (I/Q) detector and controller

Stefan Simrock

Control Choices (2)

Generator Driven Resonator

Digital IO Control

Digital I/Q Detection

- downconversion of cavity field to IF frequency at 250 kHz
- complete phase and amplitude information of the accelerating field is preserved.

• sample IF signal at 1MHz rate

Stefan Simrock

 subsequent samples describe real and imaginary component of the cavity field.

Digital Control at the TTF

• RF digital feedback system (TTF2) :

• +I,-I,+Q,-Q detection scheme :

• Stability requirements on phase and amplitude of the cavity field vector :

Requirement for CEBAF (JLAB)

RF control requirements with vernier

RMS error	uncorrelated	correlated
σ_A	2×10^{-4}	1.1×10^{-5}
σ_{f}	0.25°	0.13°
σ,	2.6°	00

- σ_A : relative RMS amplitude error
- σ_f : fast RMS phase error
- σ_1 : slow RMS (along linac) phase error

ERL 2005

Performance Measured at JLAB

Performance Measure at JLAB

Measured RMS errors

Frequency Range [Hz]	Relative Amplitude Error	Phase Error [°]
$\begin{array}{c} 0 - 10^{0} \\ 0 - 10^{1} \\ 0 - 10^{2} \\ 0 - 10^{3} \\ 0 - 10^{4} \\ 0 - 10^{5} \\ 0 - 10^{6} \end{array}$	5.5×10^{-6} 1.1×10^{-5} 3.5×10^{-5} 4.1×10^{-5} 5.5×10^{-5} 7.0×10^{-5} 7.5×10^{-5}	1.1×10^{-3} 1.2×10^{-3} 3.0×10^{-3} 4.6×10^{-3} 7.0×10^{-3} 1.6×10^{-2}

Performance at Rossendorf

Stefan Simrock

Stability Measured for J-PARC

F4

