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Achieving 0.01 deg. Phase Stability

  •  Short term (within in 1 ms pulse)
  •  medium term (pulse to pulse, several seconds)
  •  long term ( thermal time scale, minutes to hours)

  •  Sources of cavity field perturbations
  - Lorentz force detuning
  - Microphonics
  - Beam loading
  - other (electronic noise in field detectors, phase noise and drifts 

of phase reference, ripple of klystron power supply, etc.)
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Measured Stability in ACC 2+3
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Field Regulation at VUV-FEL
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Field Regulation at the VUV-FEL
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Field Regulation at VUV-FEL
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Drift ACC1 (cryomodule before BC) at TTF
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Phase stability with pyro-detector

But! This is the phase stability between
the beam arrival into the acceleration module
relative to the RF phase!!!
=> Major contribution is likely from laser
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Error Map
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Improving Cavity Field Regulation
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Control Choices (1)

  •  Self-excited Loop (SEL) vs                                                
Generator Driven System (GDR)

  •  Vector-sum (VS) vs individual cavity control

  •  Analog vs Digital Control Design

  •  Amplitude and Phase (A&P) vs                                        
In-phase and Quadrature (I/Q) detector and controller
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Control Choices (2)
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Digital I/Q Detection

RF local oscillator (LO)

IF
1300 MHz 1300.25 MHz

250 kHz

mixer
amplitude

time
[µs]

x0

x1

x2

x3

U cos(ωt+∆φ)

1 2 3 40

 -

 •  downconversion of cavity field
to IF frequency at 250 kHz

• complete phase and amplitude
information of the accelerat-
ing field is preserved.

 •  sample IF signal at 1MHz rate

 •  subsequent samples describe
real and imaginary component of
the cavity field.
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Digital Control at the TTF

DA
C

DA
C

ReIm

Cavity 32
......
8x

Cavity 25

klystron
vector

modulator  master
oscillator

1.3 GHz Cavity 8
......
8x

Cavity 1

cryomodule 4

...
cryomodule 1

. . . .

LO    1.3 GHz 
+ 250 kHz

250 kHz

AD
C

f  = 1 MHz
s

. . . . ...

vector-sumΣ
(    )ab

a -b

1 8
(    )ab

a -b

25
(    )ab

a -b

32
(    )ab

a -b

DSP
systemsetpoint

table
gain
table

feed

table
forward

++
digital

low pass
filter

ImRe  ImRe  ImRe  

clock

LO

AD
C

LO

AD
C

LO

AD
C

ImRe

power transmission line

1.3GHz
field probe



Frank Ludwig / 03.12.04

Noise characterization of the LLRF System (TTF2)

n RF digital feedback system (TTF2) :

MHzf 10≈∆
Bandwidth for transforming 250kHz squared pulses :

Required regulation bandwidth only :

MHzf 1≈∆

n +I,-I,+Q,-Q detection scheme :

Rotation of the LO-signal in four 90o steps

Re

Im

Phase modulation

(+I,+Q)

(+I,-Q)(-I,-Q)

(-I,+Q)



Frank Ludwig / 03.12.04

n Stability requirements on phase and amplitude of the cavity field vector :

Amplitude stability : 410−<
A
Ad

Phase stability : °< 01.0df

VµUd XFEL 100<
(normalized to A=1V)

fSdffSUd U
f

U ∆
∆

≈= ∫ )(

rms-voltage noise :

XFELTTF UdmVUd ×=≈ 100.12

n Noise measurement at input of an ADC :

⇓

ACC5, Probe
DCW, AN-36

time
100ns/div

voltage
2mV/div

Reduce the measuring bandwidth

Low-noise design

Averaging, switched low-pass!

Correlation methods

VµUdUdUdUd externMOIQDWC 100...2222 <++++

Superposition of all noise contributions :

+

-
+
+

and linearity 

df

Ad

A

Noise characterization of the LLRF System (TTF2)
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Requirement for CEBAF (JLAB)
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Performance Measured at JLAB 
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Performance Measure at JLAB 
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Performance at Rossendorf
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Stability Measured for J-PARC

+-0.08%

+-0.04 deg.

S. Michizono



  • AD8347 IQ detector
The same circuits are also used to detect the incident wave
and reflected wave vectors usually described as forward
and reflected power. Examples of the excellent perfor-
mance of these detectors are shown in Figure 3. The 

ACTUATORS FOR FIELD CONTROL
Similar circuits as used for field detection are also used for
the control of the incident wave. Since analog multipliers
can be also used for control of the amplitude of an rf wave
they can be used in upconverters and for amplitude con-
trol. The digital downconversion scheme can also be used
in an upconversion mode where the frequency f1 (discrete

samples) written to the DAC which is clocked at f2  gener-
ates a sideband (among many others) of f1+f2 which con-
tains the control vector and is filtered and upconverted to
the operating frequency of the cavity. Examples for vector
modulators are:

  • RF 2480 

  • AD8346

  • HMC 495 and 497
The linearity of a vector modulator is shown in Figure 4.

DIGITAL RF CONTROL
The key elements of a digital feedback system are the
ADCs for the measurement of the detector signals for the
cavity field and forward and reflected power, the DACs
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Figure 2: Typical configuration of an RF control system using digital feedback control

a) b)

Figure 3: a) Temperature stability of the amplitude
detector AD861 and b) linearity of IQ detector AD8347

Figure 4: Linearity of the vector modulator RF 2480


