Design Options for the XFEL Undulator Vacuum Chamber

M.Seidel, DESY

Outline

relevant beam/radiation parameters

beam power, spont. radiation power, opening angle, beam dimensions and required aperture

mechanical layout, materials

alignment requirements, aperture dimensions/shape, absorbers, pumps/BPM's/bellows

pressure requirements/estimations

radiation vs. thermal desorption, pressure profile, conditioning times, pumping concept

wakefield related aspects

resistive wall, roughness requirements, choice of material

Beam and Radiation Parameters

		<u>XFEL</u>	LCLS	PETRA III
beam	energy	(10)20 GeV	4.313.6 GeV	6 GeV
	avg. power	300 kW	2.4 kW	
	avg. current	1532 μ Α	0.12 µA	100mA
spont.	dΡ _γ /dl (max)	6 W/m	22 mW/m	45 W/m
radiation	E _c (max)	348 keV	154 keV	2.4 keV
	d²n _γ /dt dl (max)	8-10 ¹⁴ m ⁻¹ s ⁻¹	6·10 ¹² m ⁻¹ s ⁻¹	4·10 ¹⁷ m ⁻¹ s ⁻¹
	vertical 1/γ	2550 μ <mark>rad</mark>		
	horizontal K/γ	153310 μ <mark>rad</mark>		

Comments on XFEL Parameters

- average beam and radiation power are significant → possible heat source in undulator
- even with absorbers photon desorption may dominate pressure
- horizontal opening angle of radiation is relatively large → requires tight absorbers

Chamber Geometry

circular vs. elliptical

inner shape: absorber

outer shape: chamber

shielding angle 300μ rad / 600μ rad

advantages wide chamber

- less collimator wakefields
- better vacuum conductance
- more horizontal aperture for misalignments / orbit errors

Chamber Materials

	Pro's	Con's
aluminum extrusion	 heat conductivity cooling channels by extrusion integrated pump possible better AC conductivity 	 roughness at limit poor outgassing
electro polished steel pipes/sheets with coating (Al, Au, Cu)	very smoothlow outgassing	 cooling difficult risk on magnetic permeability hard to make elliptic
copper pipe	 DC conductivity rel. low outgassing acceptable roughness 	 elliptic/flat shape difficult

SR Attenuation in Absorber

M.Seidel, WUS'05, DESY

proposal for an AI extrusion

- includes water cooling
- gap: 10mm, aperture 9×15mm²
- precision support needed
- •oxide layer critical!

T.Wohlenberg

6/7/2005

M.Seidel, WUS'05, DESY

Pressure Estimate

conductance limited c=0.18 m l/s; aluminum pipe

condition	outgassing [mbar l / s m]	avg. pressure [mbar]
thermal desorption (after few weeks)	4·10 ⁻⁹ 4·10 ⁻⁸	
without absorbers without conditioning	3·10 ⁻⁶ , η=0.09	3 ⋅10 ⁻⁵
without absorbers after 2000h	2·10 ⁻⁸ , η=7·10 ⁻⁴	3·10 ⁻⁷
with absorbers, 1% residual rad.	3·10 ⁻⁸ , η=0.09	3.10-7
with absorbers after 2000 h	no improvement!	dito!

Comment on Pressure

- pressure typically in 10⁻⁷mbar range
 → better with integrated pump
- Bremsstrahlung is no issue because experiments not in straight line (mirror)
- but: fast ion instability could be a problem molecules captured for A>5 estimated rise time: τ ~ 60μs ! (to be verified)
- numerical simulations necessary

Fast Ion Instability

- theory: coupled oscillator system beam/ions
- decoherence of ions with time important

ion mass captured:
$$A_{crit} = \frac{N_b L_{sep} r_p}{2\sigma_y (\sigma_x + \sigma_y)} \approx 5.5$$

initial rise time:
$$\tau = \frac{\gamma \sigma \sigma}{N_b n_b c r_e \beta_y \sigma_{ion}} \left(\frac{k_B T}{p}\right) \sqrt{\frac{8}{\pi}} \cdot 0.1 \approx 60 \mu s$$

M.Seidel, WUS'05, DESY

high pressure burst during bunch train ?

Problem: pulsed operation, radiation desorption happens in 1% of time \rightarrow unacceptable pressures during beam-on times?

M.Seidel, WUS'05, DESY

The answer is no!

time dependent one-dim. diffusion equation:

 $c \frac{\partial^2}{\partial z^2} P(z,t) + q(z,t) = v \frac{\partial}{\partial t} P(z,t)$ $\int \frac{\partial^2}{\partial t} P(z,t)$ volume per length; 0.11 l/m outgassing (rad. desorption)

spec. conductance; here: 0.18 l m/s

diffusion coefficient: $D = \frac{c}{c} = \frac{\langle \Delta z^2 \rangle}{\Delta t}$

for typical diffusion length $\Delta z = 2m$: $\Delta t = 2.4 \text{ sec} >> 0.1 \text{ sec}$

pressure variations are slow \rightarrow deviations from average pressure small

Wakefield Effects

extremely short bunches (25µm), energy spread critical for SASE wakefields: geometric, resistive, dielectric layer/roughness

unavoidable: resistive wake from narrow chamber \rightarrow use this as a measure for the other effects

rms energy	resistive (Cu):	39.5 V/pC m		
spread:	geometric	absorber (10mm taper)	74 V/pC	
M.Dohlus		flange gap	5 V/pC	
1. Zagoroanov.	oxide layer	Cu 1nm Al 5nm	1.1 V/pC m 5.7 V/pC m	
	roughness	Al 600nm(!)	9 V/pC m	
avg. HOM power:		in beam pipe:	P _{max} = 2.1 W/m	
6/7/2005	M.Seidel, WUS'05, DESY			

Wake Calculations (M.Dohlus)

XFEL: avoid peaks in charge distrib. \rightarrow Cu, Al, Au, Ag ... are roughly equivalent high DC conductivity desirable though..

6/7/2005

M.Seidel, WUS'05, DESY

some roughness profiles...

M.Seidel, WUS'05, DESY

integrated power spectrum roughness rms vs. wavelength λ

6/7/2005

M.Seidel, WUS'05, DESY

Summary

- chamber design still in conceptual phase problems: how to optimize wakefields, pressure
- pressure critical due to small conductance; fast ion instability possible, internal pump required?
- probably cooling of beam pipe preferred for temperature stability of undulator; working solution: extruded Al profile alternatives: Cu pipe; e-polished, coated (Au?) SS profile
- abs./pump/BPM(cavity?)/bellows insertion under study

remarkable differences between LCLS and XFEL are higher current, long bunch trains and smoother bunch shape