On-crest slice emittance measurements

Michael Roehrs

Outline

- Results of on-crest slice emittance measurements
- Sources of (x,z)-tilts observed with LOLA
- Effects of the tilt on slice emittance measurements
- conclusions

Slice emittance measurements with different quadrupole scans (19.02.07)

- Standard method: simultaneous scan of Q9ACC4-Q10ACC6 (good long. Resolution)
- Scan of Q10ACC6 (two different optics)

Results: scan of Q10ACC6 (optics 1)

Gauss-fit:

Second moments:

Average slice emittance: 2.7 mm mrad (gauss) / 3.1 mm mrad
Projected emittance including tilts: $<4.3 \mathrm{~mm}$ mrad / $<4.8 \mathrm{~mm} \mathrm{mrad}$
Projected emittance BC2-section:
Michael Röhrs

Slice mismatch and initial Twiss parameters

\longrightarrow Correlated to energy profile ?

Comparison of measured and calculated bunch widths

Scan of Q10ACC6 (optics 2)

Second moments:

Average slice emittance: 3.0 mm mrad (gauss) $/ 3.1 \mathrm{~mm}$ mrad
Projected emittance including (z-correlated) tilts: 4.3 mm mrad $/ 5.0 \mathrm{~mm} \mathrm{mrad}$

Optics1:

Multi-quadrupole-scan

Average slice emittance: 2.4 mm mrad (gauss) / 2.7 mm mrad

Optics1:

02.04.07

Michael Röhrs

Reason for deviating slice emittance:

- higher resolution?
- error in transfer matrix ?

Tilt in (x,z)-plane during a quadrupole scan (optics 2)

Michael Röhrs

Tilt in (x,z)-plane during a quadrupole scan (optics 2)

Michael Röhrs

Tilt in (x,z)-plane during a quadrupole scan (optics 2)

Michael Röhrs

Tilt in (x,z)-plane during a quadrupole scan (optics 2)

Michael Röhrs

Tilt in (x,z)-plane during a quadrupole scan (optics 2)

Michael Röhrs

Tilt in (x,z)-plane during a quadrupole scan (optics 2)

Michael Röhrs

Tilt in (x,z)-plane during a quadrupole scan (optics 2)

Michael Röhrs

Tilt in (x,z)-plane during a quadrupole scan (optics 2)

Michael Röhrs

Tilt in (x,z)-plane during a quadrupole scan (optics 2)

Michael Röhrs

Tilt in (x,z)-plane during a quadrupole scan (optics 2)

Michael Röhrs

Tilt in (x,z)-plane during a quadrupole scan (optics 2)

Michael Röhrs

Tilt in (x,z)-plane during a quadrupole scan (optics 2)

Michael Röhrs

Possible Sources for tilts measured via LOLA

- Rotation of LOLA
- -Rotation of q9AG67-
- Rotation of the Camera-system
y-correlated sources
- XY-coupling
- Sextupole components of Q9AGG7
- Transverse wake fields in cavities / in LOLA
- Dispersion (offferest)
- RF-Coupler kicks
- RF-focusing (off-crest)
- RF-Acceleration (off-erest)
- RF-fringe fields in cavities (eff-crest)

z-correlated sources

- Fietd errors within LOLA

Measurement of y - and z-correlated contributions by flipping the phase of LOLA

Rotation of the camera / of LOLA

Rotation of the camera:

- With respect to the screen holder:
~19 mrad

- With respect to V10ACC7 (vertical steerer): ~17 mrad

Rotation of the camera and LOLA:

- LOLA-phase-flip: 11-21 mrad
- Scan of LOLA-phase: 11-17 mrad

$\longrightarrow \quad$ Rotation of the camera of $\sim 1^{\circ}$
\longrightarrow Rotation of LOLA < 10 mrad

z-correlated tilt during a quadrupole scan

Scan of Q10ACC6 (slice emittance measurement, optics 2)

\longrightarrow Tilt (in this case) generated upstream of Q10ACC6!

z-correlated tilt during a quadrupole scan

z-correlated tilt during a multi-quadrupole-scan

First quadrupole scanned: Q9ACC4, upstream of module ACC5!

z-correlated tilt during a multi-quadrupole-scan

z-correlated tilt during a multi-quadrupole-scan

z-correlated tilt during a multi-quadrupole-scan

Michael Röhrs

z-correlated tilt during a multi-quadrupole-scan

z-correlated tilt during a multi-quadrupole-scan

Michael Röhrs

z-correlated tilt during a multi-quadrupole-scan

Time-dependend kick added in the center of ACC5:

\longrightarrow Contributions from wake fields in ACC5?

z-correlated tilt sources in cavities

Kick difference Δx ' between head and tail per cavity :

On-crest:

Off-crest:

$15 \mathrm{MeV} / \mathrm{m}, 0^{\circ}$; head-tail: 9 mm ; wakes: $1 \mathrm{nC}, \sigma_{\mathrm{x}}=1.5 \mathrm{~mm}$

Emittance growth << 10\%!
Wake functions: I. Zagorodnov, T.Weiland: TESLA Report 2003-19;
Coupler Kicks: Presentation of M. Dohlus
02.04.07

Michael Röhrs

LOLA: transverse wake fields

Time-dependend kick in LOLA:

Resulting centroid offset on the screen:

Aperture of LOLA scanned -> no significant offset of the structure!
Wake functions : I. Zagorodnov, T.Weiland: TESLA Report 2004-01

Effects of the tilt on slice emittance measurements

- Non-gaussian profiles caused by tilts?

- Dependence of measured slice widths on the LOLA-phase:

XY-coupling in combination with an (x,z)-tilt

Simulation:

Slice widths :

Conclusions

- The measured slice emittance ranges from $\sim 2 \mathrm{~mm}$ mrad to $\sim 3 \mathrm{~mm}$ mrad in the center
- It is not in contradiction to measured projected emittance values
- z-correlated tilts are mainly generated upstream of LOLA, most likely in the accelerating modules

Errors due to erroneous transfer matrices

Deviations of k-values:

Deviation of the energy:

\longrightarrow Emittance error due to erroneous transfer matrices < 10\%

Tilt from xy-coupling: simulation

Emittance growth due to linear tilts

Gaussian bunch

Michael Röhrs

