

TESLA Module RF Modeling in elegant

Effects

- Structure wakefields Coupler wakefields Coupler kicks
- Structure wakefields \rightarrow TRWAKE (Green function)
- Coupler wakefields \rightarrow TRWAKE (Green function)
 - → RFDF (Transverse deflecting cavity)
- Applications Beam tilt measurements at BC2 Emittance growth due to orbit bump through ACC23

FEL Beam Dynamics Meeting, 2nd of April of 2007 Eduard Prat, DESY

Coupler kicks

In elegant: Implemented as transverse deflecting cavities (RFDF) Orbit dependence solved iteratively

output phase space--input: couplers2.ele lattice: test_wakes&couplers.lte

output phase space--input: couplers2.ele

lattice: test_wakes&couplers.Ite

Application: Beam tilt at BC2 (24-1-07 & 20-02-07, C. Gerth, K. Hacker, E. Prat)

The idea is going diagonally through ACC1 applying vertical orbit bumps, measure beam profile using the SR camera at BC2 & calculate the x-y tilt for different bump amplitudes and different charges

Orbit bump refers at BPM9ACC1. Done with V2GUN and closed with V10ACC1 and V1UBC2. V2GUN is coupled.

Simulation conditions

ACC1 voltage: cavities 1 to 4 \rightarrow 11.42MV/m Cavities 5 to 8 \rightarrow 18.42MV/m Energy after the gun \rightarrow 4.5 MeV Energy after ACC1 \rightarrow 127 MeV ACC1 off-crest by 8 degrees

Charge = 0.6 nC

Gaussian beam: transverse emittance = 2mm mrad Bunch length = 1.7mm Fractional momentum spread = 0.05 / Additional momentum chirp = -2.5 m⁻¹

ASTRA beam (backtracked from downstream ACC1 with 8 degrees off-crest up to the GUN)

Orbit and dispersion

Most of the dispersion generated at the 1st cavity of the module

Measured vs simulated dispersion (+3mm bump)

	Tilt (degrees)		
Bump amplitude	+3 mm	-3 mm	
Basic case	-0.75	0.72	
+ cavity wakes	-0.83	0.81	
+ coupler wakes	-0.71	0.76	
+ coupler kicks	-0.77	0.71	
+ all together	-0.80	0.84	

- Main contribution: dispersion generated in the module and in the quadrupoles
- Structure wakes amplifies the tilt by ~10%
- · Coupler wakes and kicks: "only" add a tilt

Due to coupler effects, charge dependence on the tilt differs for positive and negative bumps

Application: Emittance increase due to orbit bump through ACC23 (20-12-06, K. Honkaavara, F. Loehl, E. Prat)

2 emittance measurements in the SEED section one after the other.
The difference is going with a bump of -6 mm trough ACC23.
This led to an emittance increase of more than a factor of 2

Simulations including wake fields predict much smaller effect ... Other effects???

Where & when	Comments	ε _x [mm mrad]	ε _y [mm mrad]
Seed 17.08h	'Good' orbit' + 6mm y bump in ACC23 – matched	4.09 ± 0.10	6.18 ± 0.15
Seed 18.27h	Corrected to 'good' orbit – matched	3.83 ± 0.13	2.64 ± 0.08

FEL Beam Dynamics Meeting - 02/04/07

GEMEINSCHAFT

Eduard Prat, DESY

Thanks to Martin and Igor for their help!