

Dispersion Effects on SASE at FLASH

- > SASE dependence on e⁻ trajectory
- SASE vs e⁻ energy for different dispersion scenarios
- SASE spectrum dependence on dispersion

Measurements done 11 & 15 October 2008 (total=1shift) Simulations done with Genesis 1.3

Eduard Prat FEL Beam Dynamics Meeting 24 of November of 2008, Hamburg

SASE dependence on electron trajectory Measurements

FWHM: 100-105 μrad (x) / 90 μrad (y)
(x>y because e⁻ wiggling motion in the undulator is in x?)
Good reproducibility between different days

SASE dependence on electron trajectory Simulations vs measurements

Idea: finding a "reasonable" input e- beam for Genesis with an orbit sensitivity as in reality.

SASE simulations Bunch length = 100e-4m Gaussian current profile (Imax=1.5 KA) Energy chirp of $\pm 1\%$ Rest of conditions constant along the bunch: ϵ_u =2.2 µm, matched optics

Steady state simulations (SS): 1 single λ Time-dependent: bandwidth

Good agreement

FEL Beam Dynamics / 24-11-08

SASE energy vs electron energy Measurements

Energy change by varying ACC456 gradient Measurements averaged over 100 points

rms dispersion	dx	dy
initial case	22mm	30mm
extra dx	48mm	28mm
dx corrected	12mm	31mm
dx/dy corrected	11mm	5mm

FWHM goes from **0.82** to **1.72%** after correcting dispersion in both planes ③

FEL Beam Dynamics / 24-11-08

SASE energy vs electron energy Simulations

Considered effects: -Orbit changes according to dispersion functions -Optics changes (magnets were not scaled)

From the dispersion measurement, the dispersion functions at the entrance of the undulator can be derived: D(s) = D(s0)*R11(s)+D'(s0)*R12(s)

	Initial situation	After correction
dx	12 mm	14 mm
dx'	6.0 mrad	1.9 mrad
dy	47 mm	5 mm
dy'	-2.9 mrad	0.4 mrad

FEL Beam Dynamics / 24-11-08

No dispersion generated inside the undulator

SASE energy vs electron energy Simulations vs measurements

Good agreement

SASE spectrum vs dispersion Measurements

Widest spectrum and maximum power without dispersionEffects depend on the dispersion sign $\uparrow QECOL \rightarrow \downarrow \lambda$ (but not symmetrically): $\downarrow QECOL \rightarrow \uparrow \lambda$

Eduard Prat, DESY

Dispersion generated when changing Q3/5ECOL current

Decrease of 0.5 A decrease (0.6% of the current)

Rms dispersion in the undulator: 15 mm

Dispersion functions at the undulator entrance	
dx	0.7 mm
dx'	4.7 mrad

 \rightarrow No dispersion generated inside the undulator

Effect of the dispersion to SASE spectrum depends on the initial correlation between transverse coordinates and energy. In general we have the following relation:

$$u = u_0 + \eta_u \cdot \frac{\Delta p}{p} + \tau_u \cdot \frac{\Delta p}{p}^2 + \cdots$$
$$u' = u'_0 + \eta'_u \cdot \frac{\Delta p}{p} + \tau'_u \cdot \frac{\Delta p}{p}^2 + \cdots$$

Introducing dispersion changing Q3/5ECOL current, a linear component η_u is added

Analysis restricted to horizontal offset x and the impact of Dx Considered dispersions: [0 +5cm -5cm]

FEL Beam Dynamics / 24-11-08

No initial correlation x-energy / no off-set

The spectrum becomes narrower
 Central wavelength does not change

No correlation x-energy / non-zero off-set (+250 µm)

> Central wavelength depends on the dispersion sign

Initial linear correlation x-energy

Effect to the spectrum width depends on the final correlation (can be narrower or wider)
 Central wavelength does not change

Initial quadratic correlation x-energy

The spectrum becomes narrower
Central wavelength depends on the

dispersion sign

SASE spectrum vs dispersion Measurements

Linear + quadratic initial u-u'/energy correlation? Simulations are ongoing...

Summary

Dispersion correction improves sensitivity of SASE to electron energy

➢ Introducing dispersion narrows the SASE spectrum and changes the central wavelength. An initial quadratic correlation u/u'-energy explains qualitatively the measurements.

Next steps

Fully simulate SASE wavelength vs dispersion (compare required initial uu'/energy correlation with s2e simulations / measurements)

> Repeat the measurements: see reproducibility, try to introduce dispersion with steerers in the MATCH section instead of QECOL.