# **Measurement of Cavity BPM Performance**

- 1. Goal
- 2. Measurement with Network Analyzer
- 3. Measurement with Beam
- 4. Summary and Outlook

D. Lipka, J. Lund-Nielsen, D. Nölle, M. Siemens, S. Vilcins, Th. Traber; MDI, DESY Hamburg

D. Treyer, M. Stadler; PSI

With special thanks to R. Kammering, J. Kruse, D. Liebertz, J. Liebing, J. Thomas, H.-C. Weddig

Sorry for forgetting somebody!



## Goal

#### Measurement of

- Resonance frequency
- Bandwidth
- Loaded quality factor
- Orthogonal coupling
- Slope Voltage/Offset and Voltage/Charge
- Compare with expectation to improve next generation



#### Reference and Dipole resonator



#### **Drawing of Cavity BPM**







#### **Photos**





Produced 3 Cavity BPM: BPM I BPM II BPM III



#### **Measurement setup with Network Analyzer**



2 channel network analyzer (NWA), measurement of scattering matrix (Sparameter: S11, S22 [reflection] and S12, S21 [transmission])

Other ports terminated with 50 Ohm





#### **NWA: Rohde & Schwarz**

Up to 8 GHz N-Cal-Kit from PSI





## **Transmission Data: Analysis**

Time domain

Frequency domain

$$U(t) = U_{out}e^{-\frac{t}{\tau}}\cos(\omega_{R}t)\Theta(t)$$
Fourier transformation
$$F(\omega) = \frac{U_{out}}{\sqrt{2\pi}}\frac{\frac{1}{\tau}+i\omega}{\left(\frac{1}{\tau}+i\omega\right)^{2}+\omega_{R}^{2}}$$

$$f_{R} = resonance \ frequency$$

$$\tau = \frac{Q_{L}}{\pi f_{s}}, \ decay \ time$$
Adapting  $|F(\omega)|$  to transmission data gives resonance frequency and loaded

$$Q_L =$$
, loaded quality factor  
 $BW = \frac{f_S}{r}$ , bandwidth

 $Q_L$  $U_{out} \propto beam offset$  quality factor





### **Dipole resonator: Results**

| Parameter            | Expected | BPM I        | BPM II       | BPM III      |
|----------------------|----------|--------------|--------------|--------------|
| f <sub>R</sub> / MHz | 4400±17  | 4408.7 ± 0.6 | 4419.0 ± 0.5 | 4414.5 ± 0.6 |
| BW / MHz             | 74       | 70.1 ± 2.2   | 66.7 ± 0.7   | 72.9 ± 1.5   |
| Q <sub>L</sub>       | 60       | 63.0 ± 2.0   | 66.3 ± 0.7   | 60.6 ± 1.3   |

For resonance frequency the reflection data of dipole resonator used too,

Systematic shift of frequency to higher values because of roundings

| × × |  |
|-----|--|
|     |  |



## **Orthogonal Coupling**





HELMHOLTZ | GEMEINSCHAFT

## **Reference Resonator: Analysis**

Only Reflection S11 because one port on this resonator



Adjust *L* until  $Re(Z_r)$  constant, point of intersection between *Re* and |Im| gives bandwidth for  $Q_L$  with  $Z_r + 50$  Ohm



#### **Reference Resonator: Results**

| Parameter            | Expected  | BPM I        | BPM II       | BPM III      |
|----------------------|-----------|--------------|--------------|--------------|
| f <sub>R</sub> / MHz | 4400 ± 16 | 4410.6 ± 0.2 | 4412.0 ± 0.1 | 4411.5 ± 0.1 |
| BW/ MHz              | 70        | 67.75 ± 0.95 | 69.59 ± 0.92 | 70.63 ± 0.36 |
| Q <sub>L</sub>       | 62        | 65.11 ± 0.91 | 63.41 ± 0.85 | 62.46 ± 0.32 |

Systematic shift of frequency to higher values

because rounding causes this shift



#### **Transmission Data broad frequency range**



Adapting  $|F(\omega)|$  to broad frequency range transmission data gives resonance frequency and loaded quality factor for higher order modes

Global fit does not describe background perfectly, therefore range per mode restricted



#### **Transmission Data broad frequency range: Results**

| Mode                | Parameter                  | Expected  | BPM I        | BPM II       | shown                                                                                                   |
|---------------------|----------------------------|-----------|--------------|--------------|---------------------------------------------------------------------------------------------------------|
|                     | <i>f<sub>R</sub></i> / MHz | 4400 ± 17 | 4409.0 ± 0.7 | 4419.2 ± 0.4 |                                                                                                         |
| 1 IVI <sub>11</sub> | $Q_{L}$                    | 60        | 62.8 ±1.9    | 65.4 ± 0.4   | Result: Agreement<br>with short range<br>TM <sub>11</sub> , therefore<br>broad range can be<br>used too |
| TM <sub>21</sub>    | <i>f<sub>R</sub></i> / MHz | 5192      | 5183.1 ± 0.4 | 5191.5 ± 0.4 |                                                                                                         |
|                     | Q <sub>L</sub>             | 30        | 29.2 ± 0.2   | 29.9 ± 0.2   |                                                                                                         |
| TM <sub>12</sub>    | <i>f<sub>R</sub></i> / MHz | 7612      | 7623.6 ± 3.2 | 7618.2 ± 1.0 |                                                                                                         |
|                     | Q <sub>L</sub>             | 54        | 61.6 ± 0.3   | 60.3 ± 1.8   |                                                                                                         |

Measured values wn

**Reflection Data:** 

Too few data points to get result of quality factor



#### **Summary Network Analyzer Measurement**

- Measured frequency, loaded quality factor of dipole and reference resonator
- Measured orthogonal coupling of dipole resonator
- Frequency shifted to higher values due to rounding
- Orthogonal coupling of BPM III higher because of mechanical tolerances



### **BPM III in Beamline**

Beam Measurement with Oscilloscope (6 GHz, 20GS/s), 123 m cable between BPM and Oscilloscope

Available: stepper motor in both transverse directions (x, y)

Test of movement range, boundaries determined by beam loss monitor: Horizontal: between -1.57 and 2.05 mm Vertical: between -2.82 and 0.97 mm

SASE not affected!





## Setup



Reference resonator signal always on channel 4 Free port terminated with 50 Ohm load



#### **Attenuation and Phase shift of cables and filters**

| Signal<br>(pickup<br>port nr.) | Patch cable<br>tunnel side<br>[dB] ∠ [°] | 120 m 7/8"<br>Coaxial cable<br>from [2] | Patch cable<br>"Kryo-Anbau"<br>side | Low pass<br>filter | Total       |
|--------------------------------|------------------------------------------|-----------------------------------------|-------------------------------------|--------------------|-------------|
| 1 D <sub>Y</sub>               | $1.50 \angle 0$                          | 10.5 ∠ 0                                | $1.70 \angle 0$                     | 0.49 ∠ 0.0         | 14.2 ∠ 0.0  |
| 2 D <sub>X</sub>               | 1.35 ∠ 3                                 | 10.5 ∠ -2.5                             | 1.45 ∠ -5                           | 0.47 ∠ -0.9        | 13.8 ∠ -5.4 |
| 3 D <sub>Y</sub>               | 1.60 ∠ −5                                | 10.5 ∠ 17                               | 1.50 ∠ 8                            | 0.45 ∠ 0.8         | 14.1 ∠ 20.8 |
| 4 D <sub>X</sub>               | 1.55 ∠ 6.5                               | 10.0 ∠ -14                              | 1.50 ∠ 4                            | 0.44 ∠ 3.5         | 13.5 ∠ 0.0  |
| 5 Ref                          | 1.52 ∠ 2.5                               | 9.8 ∠ -7                                | 1.65 ∠ 10                           | 0.54 ∠ -0.9        | 13.5 ∠ 4.6  |

Table: Summary of signal losses and phase differences in [dB] and [°].

In addition 10 dB attenuator for Dipole signals and 20 dB for Reference signal



#### **Fit function**

To increase oscilloscope resolution for amplitude a fit is applied to the time signal, in addition resonance frequency and loaded quality factor is observed:



For time between  $t_{trigger}$  and  $t_s$  (transient oscillation):



 $U(t) = U_{out} e^{(t-t_s)f_g} \cos(\omega_R t + \phi)$ 

 $f_{g}$  gradient frequency

### Fit maximum range



- t = 14 ns shows an additional oscillation: reflection between patch cable in tunnel (1.5 m long connected on BPM) and 7/8" coaxial cable
- therefore time of fit limited to  $t_{max} = 13$  ns



#### Fit at small offsets



For small offsets the fit does not describe to the data perfectly, frequency and loaded quality factor at boundary

D. Lipka, MDI, DESY Hamburg



### **Frequency Domain**



Because other frequencies contribute to the signal

But amplitudes from fit are useful at small offsets too; resonance frequency and loaded quality factor are taken outside of the beam offset minimum

### **Vertical Scan**

#### Charge about 0.65 nC, Voltage corrected to attenuation



Dipole resonator:  $f_R = 4417.7 \pm 0.8$  MHz  $Q_I = 56.7 \pm 1.8$ 

Left slope: -6.63 V/mm Right slope: 6.71 V/mm



Reference resonator:  $f_R = 4407.4 \pm 0.9$  MHz  $Q_L = 68.8 \pm 1.1$ 

$$U_{mean} = 99.1 \pm 1.3 \text{ V}$$

Errors are standard deviation



#### Scan Results in horizontal and vertical direction: Slope

|                                                                                                                   | Charge Toroid /   | Slope  /    | Slope  /     | U <sub>ref</sub> / | U <sub>ref</sub> / |
|-------------------------------------------------------------------------------------------------------------------|-------------------|-------------|--------------|--------------------|--------------------|
|                                                                                                                   | nC                | V/mm        | V/(mm nC)    | V                  | V/nC               |
| X scan                                                                                                            | 0.653 ± 0.010     | 6.62 ± 0.19 | 10.13 ± 0.33 | 100.2 ± 1.2        | 153.4 ± 3.0        |
| Y scan                                                                                                            | $0.662 \pm 0.009$ | 6.67 ± 0.06 | 10.08 ± 0.15 | 99.1 ± 1.3         | 149.8 ± 2.8        |
| Average 20<br>Pulses X scan                                                                                       | 0.656 ± 0.009     | 6.12 ± 0.16 | 9.33 ± 0.28  | 91.2 ± 1.3         | 138.9 ± 2.8        |
| Average 20<br>Pulses Y scan                                                                                       | 0.649 ± 0.010     | 5.78 ± 0.29 | 8.91 ± 0.47  | 84.7 ± 1.2         | 130.5 ± 2.8        |
|                                                                                                                   | Sim               | ulation:    | 9.8 V/(mm nC | ()<br>•            | 92.6 V/nC          |
| Toroid charge almost constant but reference and dipole data<br>decreasing<br>Measurement<br>has to be<br>repeated |                   |             |              |                    |                    |



#### Scan Results in horizontal and vertical direction: f, Q

| Dipole resonator:                                                                  | NWA Measurement:             | Expected:       |
|------------------------------------------------------------------------------------|------------------------------|-----------------|
| $f_R = 4416.8 \pm 0.6 \text{ MHz}$                                                 | 4414.5 ± 0.6 MHz             | 4400 ± 17       |
| $Q_L = 57.0 \pm 0.9$                                                               | 60.6 ± 1.3                   | 60              |
| Reference resonator:<br>$f_R = 4407.8 \pm 0.1 \text{ MHz}$<br>$Q_L = 67.1 \pm 0.4$ | 4411.5 ± 0.1<br>62.46 ± 0.32 | 4400 ± 16<br>62 |

Frequency domain measurement with higher resolution; here only statistical uncertainty



#### **Crosstalk**



Slope of orthogonal Ports shows increase of signal (crosstalk)

Result: -29 dB for all measured orthogonal Ports

Analysis of time data to frequency domain gives slope, results in a crosstalk of -23 dB

NWA Measurement: -20 and -27.5 dB



## **Crosstalk in time and frequency domain**

Question: crosstalk in time domain smaller compared to frequency domain?



Reason: larger loaded quality factor on orthogonal port gives larger signal in frequency domain

Result: Crosstalk depend on analysis/electronics!



#### **Summary Beam Measurement and Outlook**

- Measured time signals from cavity BPM: dipole and reference resonator
- Slope of Reference Cavity higher as expected
- Measurements has to be repeated with monitoring charge synchronously
- Crosstalk
- Next prototypes: 3.3 GHz (cooperation decision)
- Number: 3 for resolution measurement installed at FLASH each with stepper motor in both transverse directions
- Status: Design
- Date of installation: Christmas 2008, measurement until April 2009

