

Deflecting Section For The European XFEL Polarization Adjustable Beam Line (SASE3)

Yuhui Li

XFEL Outline

- Brief introductions
- Deflecting section study
 - Single dipole deflecting $R_{5i} \neq 0; T_{5ij} \neq 0$
 - First order isochronous deflecting $R_{5i} = 0; T_{5ij} \neq 0$
 - Second order isochronous deflecting
 - Questions

$$R_{5i} = 0; T_{5ij} = 0$$

XFEL Basic Introductions

- Locating after SASE1
- Wavelength range: 0.4~4.8 nm
- Adjustable Polarization

XFEL Basic Introductions

Numerical calculation for longest and shortest wavelength (4.8 & 0.4nm)

	4.8 nm		0.4 nm	
θ (µrad)	24		4	
ω ₀ (μm)	64		34	
Z _R (m)	2.6		10	

All of the deflecting section study concerns the shortest wavelength 0.4 nm

XFEL Deflecting section study --- Single dipole Deflecting angle θ is quite small, if a simple dipole works?

 $\Theta = 100 \ \mu rad$

 $\alpha_{x0} = \frac{R_{51}\beta_{x0}}{R_{52}} = \frac{2}{L_{bend}}\beta_{x0} \rightarrow \sigma_{\min} = \frac{\sqrt{\varepsilon} \cdot R_{52}}{\sqrt{\beta_{x0}}} = \frac{\sqrt{\varepsilon} \cdot L_{bend} \cdot \theta}{2\sqrt{\beta_{x0}}}$ Dipole length, the longer, the better

 $\sqrt{\epsilon}\theta = \sqrt{4.088 \times 10^{-11}} \times 10^{-4} = 6.39 \times 10^{-10}$ Standard SASE2 β_x fulfills the initial beta function requirement

Even for a very long dipole, L_{bend} = 2m

To overcome first order geometry aberrations:

Beam dynamics meeting

Deflecting Section For The European XFEL Polarization Adjustable Beam Line (SASE3)

XFEL Deflecting section study --- first order isochronous

For first order order achromate system, the bunch length expansion due to second order geometry aberrations is:

$$\sigma^{2} = \varepsilon^{2} \begin{bmatrix} 2(T_{511}\beta_{x0} - T_{512}\alpha_{x0} + T_{522}\gamma_{x})^{2} + 2(T_{533}\beta_{y0} - T_{534}\alpha_{y0} + T_{544}\gamma_{x})^{2} \\ + (T_{512}^{2} - 4T_{511}T_{522}) + (T_{534}^{2} - 4T_{544}T_{544}) \end{bmatrix}$$

if
$$T_{511} - \frac{T_{521}^2}{4T_{522}} > 0, T_{533} - \frac{T_{543}^2}{4T_{544}} > 0$$
 when $\beta_{x0} = \frac{2T_{522}}{\sqrt{4T_{511}T_{522} - T_{521}^2}}; \quad \alpha_{x0} = \frac{T_{521}}{\sqrt{4T_{511}T_{522} - T_{521}^2}};$
$$\beta_{y0} = \frac{2T_{544}}{\sqrt{4T_{533}T_{544} - T_{543}^2}}; \quad \alpha_{x0} = \frac{T_{543}}{\sqrt{4T_{533}T_{544} - T_{543}^2}};$$

The bunch expansion has smallest value:

$$\sigma^{2} = \varepsilon^{2} \left[\left(4T_{511}T_{522} - T_{521}^{2} \right) + \left(4T_{544}T_{544} - T_{543}^{2} \right) \right]$$

From the Matrix show above:

$$\beta_{x0} = 1.573m, \alpha_{x0} = 0.067$$

 $\beta_{y0} = 8.794m, \alpha_{y0} = 2.309$

With the required initial TWISS parameters, the beam distribution change is:

- By especially setting the initial TWISS parameters, the 0.4 nm bunch can be well maintained.
- The problem is, how to make the TWISS parameters from SASE3 standard value to the required initial ones?

- Add "Matching Undulator" between the Bunching Undulator and deflecting section
- Quadrupoles are set between Matching Undulator segments to adjust TWISS parameters
- Undulator is used to maintain the Bunch during the TWISS parameters matching.

Deflecting section study --- first order isochronous

Matching Undulator Design and Bunching Undulator Length

• 97.92m long Bunching Undulator can give maximum bunch factor

• Several configurations have been investigated, all of them can match the TWISS parameters. The solutions can be:

- four undulators, 5m, 5m, 5m, 5m
- four undulators, 2m, 2m, 2m, 2m
- three undulators, 5m, 1m, 1m
- three undulators, 1m, 1m, 1m
- Different Bunching Undulator length have been studied for each match undulator structure
- •the best combination of bunching undulator and matching undulator is :

87.04 m Bunching Undulator + 3*1m Matching Undulator

European

European XFEL

Deflecting section study --- first order isochronous

Beta function of the whole system

Deflecting Section For The European XFEL Polarization Adjustable Beam Line (SASE3)

European XFEL Deflection

0.002

0.001

0.000

-0.00

-0.002

-0.003 -

 $\delta\gamma/\gamma$

Deflecting section study --- first order isochronous

Phase Normalized by Wavelength (rad)

European XFEL

Deflecting section study --- first order isochronous

Tolerance

- Random offset of quadrupoles in Matching undulator section
- No error for deflecting section
- Bunch factor measured at exit of deflecting sectiong

1.1 1.0 1.0 1.0 0.9 0.9 0.8 0.7 0.8 0.7 0.5 0.5 0.4 0.2 0 2 4 6 8 10 Offset (μm)

Deflecting Section errors

- Random and constant offset of all magnets in the deflecting section
- No error in matching section

FEL comparison

		17.5GeV,	0.4nm,)	$L_{g,3D} = 8.48,$	aperture = 1.474mm
	Length (m)	P (GW)	P_x/P_y		Polarization %	S ₃ /S ₀ %
Ideal cases	3.06 m	3.69	2.068		93.8~92.4	83.4~79.8
First order isochronous	3.40 m	1.16	3.596		85.5~77.9	74.0~65.0

- Bunch factor drops a lot in the matching undulator section
- The beta function in the crossed undulator is too smaller than the standard values
- Compare to the ideally deflecting, power drops ~68%, total polarization drops ~11%, circle polarization drops ~15%
- The maximum bunch factor in matching undulator can arrive 0.34, with 97.92m, which can not be used

A better solution can be found?

- Four cells system, total deflecting angle is 400 µrad (smaller 100 µrad deflecting hardly gives improvement)
- Total transport matrix is unity
- R5: 1.49674e-016 6.50521e-019 0.00000e+000 0.00000e+000 1.00000e+000 7.30186e-008
- T51: -7.46661e-002
- T52: 1.86252e-001 -3.38115e-004
- T53: 0.00000e+000 0.00000e+000 1.30394e-002
- T54: 0.00000e+000 0.00000e+000 **7.35423e-002 -7.317047e-005**

Beam dynamics meeting T56: 1.18833e-004 -1.48212e-004 0.00000e+000 0.00000e+000 0.00000e+000 7.37998e-007

20.

0.0

60.

40.

80.

100.

120.

140.

160.

Beam dynamics meeting

XFEL Deflecting section study --- Second order isochronous

Second Order Matrix

Random and constant offset of all magnets in the deflecting section

XFEL Deflecting section study --- Second order isochronous

FEL comparison

		17.5GeV,	0.4nm,		$L_{g,3D} = 8.48,$	aperture = 1.474mm	
	Length (m)	P (GW)	P _x /P _y		Polarization %	S ₃ /S ₀ %	
Ideal cases	3.06 m	3.69	2.068		93.8~92.4	83.4~79.8	
First order isochronous	3.40 m	1.16	3.596		85.5~77.9	74.0~65.0	
Second order isochronous	3.06 m	1.53	2.297		70.5~62.5	57.6~46.6	

Quite strange that the polarization of Second order isochronous system is worse than the first order isochronous system, Why?

XFEL Deflecting section study ---- Questions

Why the correlation of bunch factor at entrance of 1st and 2nd crossed undulator for 2nd order isochronous deflecting is smaller?

Bunch slices shape distortion

The Bunch factor difference between the Maximum and Minimum energy spread is:12.6% --- First Order Isochronous47.0% --- Second Order Isochronous

For the Second order isochronous deflecting, distortion is larger --- Find a smaller R56 for Second order isochronous deflecting

European

XFEL Deflecting section study ---- Questions

With the second order isochronous deflecting, the matrix terms R_{5i} , T_{5ii} can be optimized to zero:

R5: -6.13825e-011 6.62404e-015 0.00000e+000 0.00000e+000 1.00000e+000 1.11783e-013

T51: 6.67028e-002

T52: -2.03828e-002 -4.73361e-005

T53: 0.00000e+000 0.00000e+000 3.24998e-002

T54: 0.00000e+000 0.00000e+000 3.45780e-003 1.85512e-005

T55: 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

T56: -1.59364e-004 2.43488e-005 0.00000e+000 0.000000e+000 0.00000e+000 1.53949e-006

 R_{56} and T_{56i} are very small, why there is still ~1nm expansion?

Sextupoles impact or Elegant does not correctly report the Matrix?

09. Feb. 2008 Beam dynamics meeting

24

XFEL Conclusion

- Second order isochronous deflecting system can best maintain the electron bunching at 0.4nm (higher error tolerance, higher bunch factor, standard beta function in crossed undulators)
- Why the polarization of 2nd isochronous deflecting is worse than the 1st order isochronous?
- Why the elegant reported matrix does not match the simulation result?

Thanks!

