XFEL Beam Dynamics Meeting, 12.12.2005

Response Matrix Measurements and Analysis at DESY

Joachim Keil

DESY - MPY -

Contents

Motivation

- Response matrix analysis
 - Quadrupole gradient fit
 - Twiss function fit
- Examples:
 - HERA-e
 - PETRA-e
 - EI-Weg
- Summary

Motivation

- To achieve the maximum performance of an accelerator, the linear optics of the machine needs to be close to the design optics
- The real machine has gradient errors, alignment errors, etc. which are normally unknown and distorting the optics
- Orbit depends non-linear on the focusing of the quadrupoles.
 Analyze the difference orbits due to the kick of corrector magnets (Orbit-Response-Matrix) to find out the error sources
- □ Correct the gradient errors and restore the linear optics
- Analysis gives valuable information about the BPM system and the corrector magnets

Definition of the **orbit response matrix (ORM)**:

$$\mathbf{C}_{ij}^{xx} := \frac{\Delta x_i}{\Delta \theta_{x,j}} \qquad \text{for x-plane}$$

- Δx_i : change of the beam position at BPM i
- $\Delta heta_{x,j}$: change of the kick angle of the corrector j
- Change the kick angle of all correctors one after the other and measure the orbit change with all available BPMs
- □ Measurement can be written as

$$\begin{pmatrix} \Delta \vec{x} \\ \Delta \vec{y} \end{pmatrix} = \begin{pmatrix} \mathbf{C}^{xx} & \mathbf{C}^{xy} \\ \mathbf{C}^{yx} & \mathbf{C}^{yy} \end{pmatrix} \cdot \begin{pmatrix} \Delta \vec{\theta}_x \\ \Delta \vec{\theta}_y \end{pmatrix}$$

Due to coupling and/or rotated BPMs or rotated correctors the orbit changes also in the other plane. For an uncoupled machine: $C^{xy} = C^{yx} = 0$

Beamline

□ Corrector kick is changing the trajectory downstream of corrector:

$$\mathbf{C}_{ij} = \begin{cases} \sqrt{\beta_i \beta_j} \sin\left(2\pi |\phi_i - \phi_j|\right) & \text{if } \phi_i > \phi_j \\ 0 & \text{otherwise} \end{cases},$$

 \square Triangle above main diagonal of ${f C}$ is zero

Circular accelerator

□ Corrector kick is changing the orbit everywhere:

$$\mathbf{C}_{ij} = \frac{\sqrt{\beta_i \beta_j}}{2\sin \pi Q} \cos\left(2\pi |\phi_i - \phi_j| - \pi Q\right) - \frac{D_i D_j}{\left(\alpha_c - \frac{1}{\gamma^2}\right) C}$$

D: dispersion function, α_c : momentum-compaction factor,

C: circumference, γ : Lorentz factor

□ Second term: energy shift due to kick of the corrector

Distinguish between

$\hfill\square$ Measured matrix \bar{C}

Depends on scaling factors $b_i := 1 + \Delta b_i$ and $c_j := 1 + \Delta c_j$ of BPMs and correctors. For error-less BPMs/correctors $b_i = c_j = 1$.

□ Model matrix C

The computer model of the real machine

Assume, that model matrix depends on unknown parameters \vec{p} of the lattice (e.g. quadrupole gradient errors, quadrupole roll angles, ...). Design parameters are called $\vec{p_0}$. Then $\bar{\mathbf{C}}$ can be written as:

$$\bar{\mathbf{C}}_{ij} = \frac{1}{b_i} \cdot \mathbf{C} (\vec{p_0} + \Delta \vec{p})_{ij} \cdot c_j$$

Taylor expansion ($\Delta p_k, \Delta b_i, \Delta c_j \ll 1$):

$$\bar{\mathbf{C}}_{ij} \approx \mathbf{C}_{ij} + \sum_{k} \left. \frac{\partial \mathbf{C}_{ij}}{\partial p_k} \right|_{\vec{p}_0} \Delta p_k - \mathbf{C}_{ij} \Delta b_i + \mathbf{C}_{ij} \Delta c_j$$

□ Linear system of equations to solve:

$$\underbrace{\begin{pmatrix} \mathbf{\bar{C}} - \mathbf{C} \\ \mathbf{\vec{C}} \\ \mathbf{\vec{V}} \end{pmatrix}}_{\vec{y}} = \underbrace{\begin{pmatrix} \frac{\partial \mathbf{C}}{\partial p_k} & -\mathbf{C} & +\mathbf{C} \end{pmatrix}}_{\mathbf{A}} \cdot \underbrace{\begin{pmatrix} \Delta \vec{p} \\ \Delta \vec{b} \\ \Delta \vec{c} \end{pmatrix}}_{\vec{x}}$$

with the fit-parameter vector \vec{x} and the measured response matrix in \vec{y} . Matrix **A** can be computed e.g. using MAD

- \Box Take finite resolution of BPMs σ into account, by dividing each row of A by σ/θ_j
- Solve over-determined equations by least square fit using truncated SVD:

$$\vec{x} = (\underbrace{\mathbf{A}^{T} \mathbf{A}}_{\mathbf{B}})^{-1} \mathbf{A}^{T} \vec{y}$$
 Normal equations

□ Use for the next iteration optics with $\vec{p_0} + \Delta \vec{p}$ for the model matrix. Iterate several times, until convergence achieved.

Solving the Equations using SVD

• Matrix $\mathbf{B} := \mathbf{A}^T \mathbf{A}$ is singular and inverse matrix \mathbf{B}^{-1} is not existing due to an unknown global scaling factor f between BPMs and correctors:

$$\frac{1}{f}\frac{1}{b_i} \cdot \mathbf{C}_{ij} \cdot c_j f \equiv \frac{1}{b_i} \cdot \mathbf{C}_{ij} \cdot c_j$$

ightarrow Two small eigenvalues of ${f B}$ (x and y-plane)

 $\hfill\square$ Fix the unknown scaling factor f by measuring the dispersion function D

 \Box Solution: Remove null-space from \mathbf{B} using singular value decomposition:

$$\mathbf{B} = \mathbf{USV}^{\mathbf{T}}$$

with orthogonal matrices U and V and a diagonal matrix S with singular values s_i .

lacksquare Compute pseudo-inverse of lacksquare

$$\mathbf{B}^+ = \mathbf{V} \mathbf{D} \mathbf{U}^{\mathbf{T}}$$

using the truncated SVD and the cutoff-parameter $\epsilon < 1$. Set $1/s_i = 0$ for small singular values. Matrix **D** has diagonal shape with $\mathbf{D}_{ii} = 1/s_i$ if $s_i < \epsilon s_1$, otherwise $\mathbf{D}_{ii} = 0$.

Matrix Sizes

 ${\rm \bigcirc}\,$ Assume a ring with N BPMs and M correctors

- □ Size of response matrix: $N_{MAT} = (N_x + N_y) \cdot (M_x + M_y)$
- $\hfill \hfill \hfill$
- Examples:

Machine	N_x	N_y	M_x	M_y	N_{MAT}	$N_{\rm FIT}$	$Memory(\mathbf{A})$
El-Weg	6	6	11	12	276	35	77 kB
PETRA-e	113	113	118	111	51754	455	188 MB
HERA-p	141	141	128	126	71628	536	307 MB
HERA-e	287	287	281	277	320292	1132	2.9 GB

- O Problems for HERA-e with memory and computation time
 - \rightarrow Working on a subset of all corrector magnets/BPMs
 - \rightarrow Or: Use a different approach for optics correction!

Scaling laws for Achievable Accuracy

Assumption: FODO lattice with N BPMs and M corrector magnets; same kick θ of all correctors; same β function at all BPMs and correctors; all BPMs have the same resolution σ (V. Ziemann, EPAC 2002).

 \Box Fitting *N* BPM scaling factors:

$$\sigma(b) \approx \frac{\sigma}{\beta \theta} \frac{1}{\sqrt{M}}$$

 $\hfill\square$ Fitting M corrector scaling factors:

$$\sigma(c) \approx \frac{\sigma}{\beta \theta} \frac{1}{\sqrt{N}}$$

 \Box Fitting Q gradient errors:

$$\sigma(\Delta kl) \approx \frac{\sigma}{\beta^2 \theta} \frac{48\pi}{\sqrt{N \cdot M}}$$

Small BPM resolution σ is crucial for the sensitivity to fit errors. Use big corrector kicks θ and as much BPMs N and correctors M as possible.

• Matrix element of response matrix:

$$\Delta x_{ij} = \sqrt{\beta_i} \underbrace{\frac{\sqrt{\beta_j} \Delta \theta_j}{2 \sin \pi Q}}_{f_j} \cos(\pm \phi_j \mp \phi_i + \pi Q) \quad \text{for} \quad \begin{cases} \phi_i > \phi_j \\ \phi_i < \phi_j \end{cases}$$

• Factorization of monitor and corrector parameters:

$$\Delta x_{ij} = f_j \cos(\pi Q \pm \phi_j) \cdot \underbrace{\sqrt{\beta_i} \cos(\phi_i)}_{x_i} \pm f_j \sin(\pi Q \pm \phi_j) \cdot \underbrace{\sqrt{\beta_i} \sin(\phi_i)}_{y_i}$$
$$= \sqrt{\beta_i} \cos(\pi Q \mp \phi_i) \cdot \underbrace{f_j \cos(\phi_j)}_{x_j} \mp \sqrt{\beta_i} \sin(\pi Q \mp \phi_i) \cdot \underbrace{f_j \sin(\phi_j)}_{y_j}$$

• Alternating fit of (eta_i,ϕ_i) or (f_j,ϕ_j) :

$$\chi^2 = \sum_{i,j} \left(\frac{\Delta x_{ij}^{\text{meas}} - \Delta x_{ij}^{\text{model}}(\beta_i, \phi_i, f_j, \beta_j)}{\sigma(\Delta x_{ij}^{\text{meas}})} \right)^2 \to \min.$$

• For optics correction phases ϕ_i and ϕ_j are used (not sensitive to scaling errors of BPMs and correctors!)

- BPMs and correctors have unknown scaling factors
- Scaling factors will lead to an error in the beta function but not in the phase function ⇒ Use phase function (φ_i , φ_j) for correction!
- Phase beating due to gradient error of a quadrupole Δk_q :

$$\Delta \varphi = \frac{\beta_q \Delta k_q l}{4 \sin \pi Q} \{ \sin(2\pi Q) + \sin(2\varphi_q - 2\pi Q) + \operatorname{sign}(\varphi - \varphi_q) [\sin(2\pi Q) + \sin(2|\varphi - \varphi_q| - 2\pi Q)] \}$$

• Global correction of beta beating:

Solve for quadrupole corrections Δk_q using SVD or MICADO:

$$\|\varphi_{i,j} - \sum_{q} \frac{\partial \varphi_{i,j}}{\partial k_q} \Delta k_q \|^2 \to \min.$$

Example: HERA-e, *x*-plane

Before correction; ZEUS calorimeter closed; luminosity optics

Example: Luminosity Optics HERA-e, *y*-plane

Before correction; ZEUS calorimeter closed; luminosity optics

After correction with 10 quadrupoles ($\Delta k/k$ up to 4 %)

After correction with 10 quadrupoles ($\Delta k/k$ up to 4 %)

Response-Matrix Analysis: Accuracy

Top: Difference orbits (Measurement, unfitted and fitted model) for corrector OR 17 CI

Bottom: Difference between measurement and model before and after fit

Response-Matrix Analysis: Accuracy

Orbit difference at all BPMs before (blue) and after (red) fit (BPM resolution $\sigma \approx 7/4 \,\mu$ m):

HERA: Bugs found with ORM

HERA-e:

- □ Wrong longitudinal position of corrector magnets (VO, VG) in lattice file
- □ 20% magnetic field reduction for CV 27 corrector magnets
- Wrong longitudinal position of 8 BPMs in rotator section N & S
- Global scaling factor of BPM system (software bug)
- Many BPMs with wrong cabling or bad buttons signals
- □ Longitudinal permutation of three BPMs in HERA-e

HERA-p:

- □ Interchanged cables of s.c. quadrupoles QP33/35 NL
- Wrong length entry in magnet database for QP33/35 NL & QP33/35 SL
- Wrong calibration curve of IR quadrupole family GA/GB
- □ Wrong calibration curve of corrector magnet CZ 27

Many bad BPMs

O BPMs:

- □ x & y-plane: 113 BPMs
- □ In control system (2003): 3 different BPM types

(octagonal shape, round chamber $\emptyset = 100 \,\mathrm{mm}$ and $\,\emptyset = 120 \,\mathrm{mm}$)

- □ But: 8 different BPM types installed in PETRA!
- \Box POISSON: K_x of BPMs with octagonal shape 20 % too small (50 % of all BPMs)!

• Corrector magnets:

- O x-plane: 118 correctors
 - □ 23 CH (separate)
 - \Box 83 CB, 6 C4, 6 C5 (backleg winding)
- O y-plane: 111 CV (separate)

○ Quadrupoles:

O 23 independent quadrupole families

PETRA: BPM Scaling Factors

PETRA: BPM Scaling Factors

Four correctors longitudinally permutated: NR 8 CH ↔ NR 12 CH, NR 9 CH ↔ NR 11 CH

Found four groups of corrector scaling factors. In addition two correctors with increased field near DESY II and DESY III beam line (SOL/SOR34CV) were found.

ORM analysis PETRA-e, 7 GeV, 25.6.2003, Sextupoles off

- Vertical correctors (CV) near quadrupoles, sextupoles and dipoles
 - \rightarrow Magnetic short-circuit between CV and adjacent magnet?
- Classification by distance between CV and nearby magnets
- B = bending magnet
 MQA, MQA1 = quadrupoles
 MS = sextupole

- Result of fitting the gradients of quadrupole families with CALIF (PEM04 optics, 7 GeV)
- Relative deviations of the kvalues from theory (Q1 = doublet, Q4A = triplet A, Q4B = triplet B)
- Currents of quadrupole families
 had to be changed to achieve
 nominal tunes
- Explanation: calibration curves of quadrupoles are based on a different magnet cycling procedure; empirical corrections did correct this effect

Beta function and phase function fit, PEM04 optic, 7 GeV

Example: EI-Weg

- EI-Weg is e[±]-transport line between PE-TRA and HERA-e
- PETRA and HERA are located on different levels and have different slopes
 - Coupled beamline
 - $\Rightarrow x$ and y-bending
- Transfer efficiency in HERA II was sometimes << 100% and non-reproducible</p>
- □ Summer 2004: six BPMs were installed
- Dec. 2004: Optic was checked by measuring a response matrix

EI-Weg: BPMs, Correctors, Quadrupoles

Layout of El-Weg

- Hardware components of the EI-Weg:
 - \Box BPMs: $N_x = 6$, $N_y = 6$
 - \Box Correctors: $M_x = 11, M_y = 11$
- old Bad : Number of fit parameters pprox number of matrix elements
- Strategy: Use a precise BPM-model for position reconstruction, rely on correct calibration of correctors, fit only quadrupole families
- Result of ORM analysis: Quadrupole families are 2-4 % too strong

EI-Weg-BPM Calibration

- $O \,\, q = \Delta/\Sigma$ of the four BPM buttons were calculated as function of (x,y) on grid
- \bigcirc Positions are the solution of the non-linear equations using interpolated q:

$$\left\{\begin{array}{l} q_x^{\text{theo}}(x,y) = q_x^{\text{meas}} \\ q_y^{\text{theo}}(x,y) = q_y^{\text{meas}} \end{array}\right.$$

Example: Trajectory change due to the kick angle of vertical corrector VEL 37 and theoretical prediction with old and new optics model

Old optics model

New optics model

EI-Weg: Result of Analysis

Measured QEL-quadrupole field was different from calibration curve assumed! From optics calculations: $\Delta\beta/\beta\approx 100$ % in second part of beamline

Summary

- Response matrix analysis is a valuable tool to understand and debug the accelerator
- Fit of the response matrix allows to find out gradient errors, calibration errors of BPMs and calibration errors of corrector magnets
- But: not everything can be fitted; it depends on the number of BPMs/correctors, the kick amplitude and the resolution of the BPMs
- Comprehensive analysis of data can give information about faulty hardware
- Many errors found in HERA-e, HERA-p, PETRA and EI-Weg
- Method also useful for VUV-FEL and XFEL?