An Idea on Upgrade of the FLASH Gun Section -Draft-

- 1. Present setup
- 2. A proposal -0.3 m upstream shift of the gun
- 3. Conclusion and Outlook

Jang-Hui Han 15.01.2007

XFEL Beam Dynamics Meeting

Present setup

(45 MV/m, $I_{\text{main}} = 278 \text{ A}$)

Dark current (45 MV/m, $I_{\text{main}} = 283 \text{ A}$)

Dark current (45 MV/m, $I_{\text{main}} = 290 \text{ A}$)

Present Operating Condition

Original design of the FLASH injector (K. Flöttmann and Ph. Piot, EPAC 2002)

40 MV/m gun gradient → 44 MV/m

Measurement with 3.34 Pfwd

Simulation with 44 MV/m

20 ps long flat-top laser profile \rightarrow 5 ps rms Gaussian

A proposal

0.3 m elongation between the gun and ACC1

Distance from the cathode

to the laser mirror $0.66 \text{ m} \rightarrow 0.96 \text{ m}$

to the collimator $1.27 \text{ m} \rightarrow 1.57 \text{ m}$

to ACC1 $2.4 \text{ m} \rightarrow 2.7 \text{ m}$

Beam Simulation

Parameters	Present setup	Proposed setup		
Input parameters				
Laser, transverse (radial)	0.85 mm (rms) ¹	0.73 mm (rms)^2		
Laser, temporal (Gaussian)	5 ps	5 ps		
Gun max RF field	44 MV/m	44 MV/m		
Max solenoid field	0.174 T	0.173 T		
ACC1 mas RF field	30 MV/m	30 MV/m		
Beam simulation result at 20 m (200 000 macro-particles)				
Projected transverse ε	$2.0 \text{ mm mrad (no } \epsilon_{\text{therm}})$	1.75 mm mrad (no ε_{therm})		
Slice ε	$0.8 \text{ mm mrad (no } \epsilon_{\text{therm}})$	$0.8 \text{ mm mrad (no } \epsilon_{\text{therm}})$		
Bunch length	1.67 mm (rms)	1.82 mm (rms)		
Beam size at the mirror	2.64 mm (rms)	2.25 mm (rms)		
Beam size at the collimator	1.47 mm (rms) ³	1.25 mm (rms)		

¹⁾ with 3.0 mm laser iris; 2) with 2.5 mm laser iris; 3) 1.8 mm in measurement

Dark Current Simulation

Dark current simulation result at 6 m (20 000 macro-particles) Dark current starts from the cathode area (2 mm rms)

Parameters	Present setup	Proposed setup	Difference
Collimator position	1.27 m	1.57 m	
Without collimator	3385	2604	20% ↓
With 8 mm φ collimator	1808	801	55% ↓

Conclusion & Outlook

With 0.3 m longer distance between the gun and ACC1;

- The dark current, originated from the cathode area, will be reduced at ACC1.
- The gained space can be used for installing dark current kicker and more diagnostics.
- Transverse emittance is reduced.
- Beam size at the vacuum mirror and at the collimator will be smaller → smaller wake effect.

Next steps;

- Find the actual operating parameter in more detail.
- Other operating conditions, e.g. gun gradient or laser temporal profile, will be considered.