Dark current at the XFEL injector

Jang-Hui Han DESY, MPY

Observations at PITZ and FLASH

- Estimation for the European XFEL
- Ideas to reduce dark current at the gun

jang.hui.han@desy.de

DC at FLASH

Undulator 1

jang.hui.han@desy.de

Estimation of dark current for the XFEL

Dark current might be more serious problem at the Euro-XFEL

jang.hui.han@desy.de

Dark current reduction

- 1. Suppressing field emission
 - Improved surface preparation
 - Generation of new field emitter

Dark current reduction

- 1. Suppressing field emission
 - Improved surface preparation
 - Generation of new field emitter

jang.hui.han@desy.de

Dark current reduction

- 1. Suppressing field emission
 - Improved surface preparation
 - Generation of new field emitter
- 2. Lowering RF gradient at the cathode area
 - Lower amount of field emission
 - Beam quality degradation
- 3. Applying collimators

Collimator

Parameter summary

		FLASH (measure)	
laser	XYrms	~1 mm	
	Lt	6~7 ps Gaussian	
	rt		
	Ek	0.55 eV (assumed)	
gun	Ecath	~42 MV/m	
	<i>f</i> emit	38°	
	Bmax	0.165 T	
	Sol. position	0.276 m	
ACC1	entrance	2.48 m	
	Emax	16 MV/m	
	ACC1 f	~ on crest	
beam	emittance	<2 mm mrad	

DC trajectories

Astra simulation at 40 MV/m gradient and 300 A main solenoid current

jang.hui.han@desy.de

DC trajectories

DC trajectories

DC Image analysis

jang.hui.han@desy.de

DC Image analysis

The green points are the electrons from the boarder of Cs_2Te . The orange points are the electrons from the edge of Mo plug.

DC Image analysis

The green points are the electrons from the boarder of Cs_2Te . The orange points are the electrons from the edge of Mo plug. The red points are the electron beams.

jang.hui.han@desy.de

Field emission Vs. emission phase

Field emission Vs. emission phase (FLASH)

Momentum distribution after gun (measurement at PITZ)

XY size of beam & dark current (FLASH)

Gun for PITZ and FLASH Energy vs. Phase 60 MV/m ຍ Ekin MeV 45° 4 F = 1300.1361 MHz, Q = 26754 10-2 8.-0 50 100 0 ξ.phase deg 1 -2 -.2 ũ. jang.hui.han@desy.de XFEL Beam Dynamics Meeting, 19 June 2006

Parameter summary

		FLASH (measure)	XFEL (original)
laser	XYrms	~1 mm	0.44 mm
	Lt	6~7 ps Gaussian	20
	rt		2
	Ek	0.55 eV	0.55 eV
gun	Ecath	~42 MV/m	60 MV/m
	<i>f</i> emit	38°	46°
	Bmax	0.165 T	0.225 T
	Sol. position	0.276 m	0.276 m
ACC1	entrance	2.48 m	3.2 m
	Emax	16 MV/m	21.5 MV/m
	ACC1 f	~ on crest	-16°
beam	emittance	<2 mm mrad	0.7 mm mrad

XY size of beam & dark current (XFEL, original)

jang.hui.han@desy.de

Momentum of beam & dark current (XFEL, original)

jang.hui.han@desy.de

New design for the XFEL

Parameter summary

		FLASH (measure)	XFEL (original)	XFEL (new)
laser	XYrms	~1 mm	0.44 mm	0.55 mm
	Lt	6~7 ps Gaussian	20	23.5
	rt		2	2
	Ek (assumed)	0.55 eV	0.55 eV	0.55 eV
gun	Ecath	~42 MV/m	60 MV/m	60 MV/m
	<i>f</i> emit	38°	46°	30°
	Bmax	0.165 T	0.225 T	0.233 T
	Sol. position	0.276 m	0.276 m	0.286 m
ACC1	entrance	2.4 m	3.2 m	2.4 m
	Emax	16 MV/m	21.5 MV/m	20 MV/m
	ACC1 f	~ on crest	-16°	-16°
beam	emittance	<2 mm mrad	0.7 mm mrad	0.7 mm mrad

Electron acceleration at half cell

Lower gradient at the cathodes, but even more acceleration at the half cell \rightarrow Able to get a low emittance!

jang.hui.han@desy.de

Beam at the new design gun

jang.hui.han@desy.de

XY size of beam & dark current (XFEL, new design)

Momentum of beam & dark current (XFEL, new design)

Conclusion and outlook

• With enlarging the half cell length, the momentum distribution of beams and dark current can be separated.

• Further optimization of the cell length ratio and machine parameters are necessary.

• Find optimum position and size of collimators including the first accelerator module