

Dark Current at Injector

Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting

Considerations for the guns

- Ultra-low slice emittance of electron beams
 → higher gradient at the gun cavity
 → solenoid field in the gun
- Low dark current
 - \rightarrow lower gradient at the gun cavity
 - \rightarrow effective collimation
- Stable operation

Dark current collimation at FLASH

jang.hui.han@desy.de

jang.hui.han@desy.de

Effect of the present collimator

jang.hui.han@desy.de

Collimator in the cryogenic tank?

When a collimator inside the cryogenic tank12 mm ϕ : 71%(simulation)10 mm ϕ : 79%

 $8 \text{ mm } \phi$: 86%

Projected Emittance at FLASH

jang.hui.han@desy.de

Slice Emittance at FLASH

Thermal emittance not included

For $E_{\rm k}$ = 0.55 eV $\rightarrow \varepsilon \sim$ 1 mm mrad

With considering the thermal ε measurement at PITZ $\rightarrow \varepsilon \sim 1.3$ mm mrad

jang.hui.han@desy.de

Change of Gun Section?

- Longer distance to ACC1?
 - Different parameters from the original design (drive-laser profile, electron bunch charge, higher gradient ...)
 - New optimization required or possible
- Longer distance to collimator
 - Possibly better collimation

Summary for the FLASH injector

- Dark current getting problematic for long pulse operation
- Present collimator at the gun section is not very efficient
- Injector optimization required considering dark current collimation

Collimation at the XFEL

- Gun gradient increase (44 \rightarrow 60 MV/m ?)
 - \rightarrow More dark current
- Longer distance to ACC1
 - \rightarrow More dark current lost at beam pipe

Beam dynamics simulation

jang.hui.han@desy.de

Simulation parameters

Parameters	Type #1	Type #2
Initial distributions of electrons		
Transverse	0.45 mm rms	0.55 mm rms
Temporal (flat-top)	2 ps rise/fall and 20 ps fwhm	
Thermal ε	0.37 mm mrad	0.47 mm mrad
Gun		
Max rf field	60 MV/m	60 MV/m
Emission phase	45°	31 °
E field at emission	42 MV/m	31 MV/m
Max solenoid field	0.222 T at 0.28 m	0.226 T at 0.29 m
Accelerator (ACC1)		
Max rf field	20 MV/m	20 MV/m
Start of 1 st module	3.43 m	4.05 m
Simulation result		
Transverse projected ϵ	0.60 mm mrad	0.64 mm mrad
Transverse slice ϵ	0.47 mm mrad	0.56 mm mrad
Bunch length	2.05 mm	1.95 mm
Mean energy	90.1 MeV	90.4 MeV
Energy spread	1.19 MeV rms	1.12 MeV rms

jang.hui.han@desy.de

Dark Current Collimation at the XFEL

Collimation with modified gun

Longer half cell by 10 mm

Discussion and Further studies

- For actual operation, dark current issue should be considered in addition to the electron beam dynamics
- Gun cavity modification, lower gradient (than 60 MV/m), another solenoid field profile ...