FLASH beam dynamic issues with 3rd harmonic system

M. Dohlus 12. November 2009 MAC Meeting, DESY FLASH & Methods

layout, some parameters, simulation methods

Rollover Compression

working point, longitudinal phase space

Compression with 3rd Harmonic System

working point and its stability, long. phase space

Transverse Dynamics

projected and slice emittance

Amplification of Microbunching

low and high energy part

present FLASH plus ACC39 is considered in the following (Dohlus & Zagorodnov)

FLASH some parameters

energy 1 GeV radiation wavelength ~ 6.5 nm this talk: simulation for 1 nC next talk (I. Zagorodnov): 500 pC, 250 pC, 100 pC, 20 pC

FLASH 3d simulation method

M. Krasilnikov - Input Desk for ASTRA gun simulations N. Golubeva – MAD optics (V2, V2+) for 1 GeV

ASTRA

CSRtrack "projected" model (sub-bunch approach)

- W1 -TESLA cryomodule wake
- W3 ACC39 wake
- TM- transverse matching to design optics

FLASH simulation methods

1d simulation method

quasi 3d simulation method

Rollover Compression working point

no 3rd harmonic system

Rollover Compression longitudinal phase space

Compression with 3rd harmonic System working point

 $1nC \rightarrow 2.5 \; kA$

ACC1+Gun: 147 MV, -5 deg ACC39: 21 MV, 142 deg

Compression with 3rd harmonic System longitudinal phase space

Compression with 3rd harmonic System stability of working point

 $q/n\overline{C}$

1.2

1

0.95

0.9∟ 0.8

- $\leftarrow \text{ working point without self effects}$
- ← tolerance (10% change of current)
- \leftarrow bunch charge (gun)

self stabilization (over compensation!)

Compression with 3rd harmonic System stability of working point

0.05 MV \leftarrow tolerance (phase)

3.1 MV \leftarrow beam loading (1 mA = 1 nC & 1 MHz)

 $P_f \approx 27 \text{ kW}$ \leftarrow forward & reflected power at 3rd harmonic cavities $P_r \approx 44 \text{ kW}$ with beam

Transverse Dynamics

Transverse Dynamics projected emittance – no coupler kicks

design optic (2+)

Transverse Dynamics projected emittance – **with** coupler kicks

design optic (2+)

Transverse Dynamics slice emittance

design optic (2+)

CSR approach: "projected" vs. "sub-bunches"

CSR model, type = "projected"

only radiation effects without SC offset independent (= "projected") only longitudinal forces bunch shape locally frozen

comparison for BC3:

CSR sub-bunch approach

SC + CSR includes transient shape deformation effects xy forces

0.1

the "projected" model is sufficient for this application

SASE simulation

from I. Zagorodnov, see next talk for more

Amplification of Microbunching

low energy part:

artificial µ-structure at cathode particle tracking with Astra

Amplification of Microbunching low energy part

after 1st cavity of ACC1 (@23MeV)

Amplification of Microbunching

high energy part:

linear gain model (integral equation)

Summary

compression with 3 rd harmonic cavity:	
working point	1 nC, 2.5 kA
$I > 0.8 I_{\rm max}$	0.2 psec or 0.44 nC
rf tolerance	0.0015, 0.055 deg
insensitive to charge fluctuations:	self stabilization
total energy spread	3 MeV
projected emittance	increased by CSR and coupler kiel optic has to be improved < 1.7 μ m for $I > 0.8 I_{max}$
amplification of µ bunching	~ 1/30 @ low energy ~ 100 @ high energy

3^{rd} harm. \leftrightarrow roll-over

slice emittance

 $0.5 \dots 1.5 \, \mu m \leftrightarrow > 2 \, \mu m$