Wakes from Surface Effects in Round Beam Pipes

beam impedance and surface impedance
dielectric layer, roughness
parameters
Gaussian beam
s2e beam
beam impedance and surface impedance

$$
Z_{b}^{\prime}=-\left.\frac{E_{z}}{I_{b}}\right|_{r \rightarrow 0} \quad Z_{s}=-\left.\frac{E_{z}}{H_{\varphi}}\right|_{r=R}
$$

$$
Z_{b}^{\prime}(\omega)=\frac{Z_{s}(\omega)}{2 \pi R} \frac{1}{1+i \frac{\omega}{c} \frac{R}{2} \frac{Z_{s}(\omega)}{Z_{0}}}
$$

metallic conductor $(\kappa): \quad Z_{s}^{(\kappa)} \approx \sqrt{\frac{j \omega \mu}{\kappa(\omega)}} \quad \kappa(\omega) \approx \frac{\kappa_{0}}{1+i \omega \tau}$
(plane wave approximation)

surface: dielectric layer

surface impedance of thin dielectric layer (ε_{r}) on perfect conductor:

$$
Z_{s, d}^{(\varepsilon)} \approx j \omega L_{d} \quad \text { with } \quad L_{d}=\Delta \cdot \mu \frac{\varepsilon_{r}-1}{\varepsilon_{r}}
$$

old assumption: $\varepsilon_{\mathrm{r}}=2$
more realistically: $\varepsilon_{\mathrm{r}}=10$ (used for the following)

surface: roughness

$$
\begin{aligned}
& Z_{s, r}^{(\varepsilon)} \approx j \omega L_{r} \text { with } \quad L_{r} \approx \frac{\Delta}{100} \cdot \mu \\
& \text { used for the following: } \Delta \approx 300 \mathrm{~nm} \\
&(\sim 3 \text { nm dielectric layer })
\end{aligned}
$$

multiple surface effects

$$
Z_{s}=Z_{s}^{(\kappa)}+j \omega\left(L_{d}+L_{r}\right)
$$

parameters

beam pipe radius 4.4 mm

material properties

$$
\begin{aligned}
& \kappa_{a l, 0}=36.6 \cdot 10^{6} \frac{1}{\Omega \mathrm{~m}} \tau_{\mathrm{al}}=0.71 \cdot 10^{-14} \mathrm{~s} \\
& \kappa_{\mathrm{cu}, 0}=58 \cdot 10^{6} \frac{1}{\Omega \mathrm{~m}} \tau_{\mathrm{cu}}=2.46 \cdot 10^{-14} \mathrm{~s} \\
& \varepsilon_{\mathrm{r}, \text { oxide }}=10 \\
& \Delta_{\mathrm{rough}}=300 \mathrm{~nm}
\end{aligned}
$$

I.Zagorodnov, 26.Feb 2007:

bunch charge 1 nC
peak current 5 kA

Gaussian beam

rw+rough+oixde

rw+rough+30nm ox rw+rough+20nm ox rw+rough+10nm ox rw+rough+ 1nm ox rw+rough (300nm) rw

s2e beam

bunch shape from the "official" start to end simulation (December 2005)

s2e beam

rw+rough+oixde

rw+rough+30nm ox rw+rough+20nm ox rw+rough+10nm ox rw+rough+ 1nmox rw+rough (300nm)
rW

s2e beam - dE vs. current

by tapering for this working point!

$\sigma_{\mathrm{FEL}} \approx 4 \times 10^{-4}$
(FEL parameter)

\rightarrow surface effects might increase FEL bandwidth significantly

