CSR Calculation for TTF2

1. method
2. no CSR, $\quad \varphi_{\text {rf }}=8 \mathrm{deg}$
3. CSR "projected", optics = option $1 \& 2, \varphi_{\mathrm{rf}}=8 \mathrm{deg}$
4. CSR "projected", optics $=$ option $1 \& 2, \varphi_{\mathrm{rf}}=12 \mathrm{deg}$
5. CSR "projected", optics $=$ option $1, \quad \varphi_{\mathrm{rf}}=7 \mathrm{deg}$
6. some LOLA pictures
7. conclusion / remarks

1. method

ASTRA distribution (xfel.1200.001.txt)
1nC, 200000 particles

1) extract rf (longitudinal momentum)
2) add ACC1 rf as required

$$
V(s)=V_{\mathrm{acc}} \frac{\cos \left(k s+\varphi_{\mathrm{rf}}\right)}{\cos \varphi_{\mathrm{rf}}}
$$

3) calculate Twiss parameters from
core of bunch (particles between $\pm 2 \mathrm{~mm}$)
use transport matrix for matching to
required values (Nina Golubeva)

$$
\begin{aligned}
& \alpha_{x}=4.619 \quad \beta_{x}=20.174 \mathrm{~m} \\
& \alpha_{y}=-0.012 \quad \beta_{y}=2.809 \mathrm{~m}
\end{aligned}
$$

particles at entrance of BC1

particles at entrance of BC1
("slices" with 5000 particles)

alpha

method ...

4) calculate BC2 with projected method sub-bunch length:

reference plane $=1 \mathrm{~m}$ after BC

BC2 chicane description

method ...

5) transformation from exit BC 2 to entrance BC 3 :
longitudinal: add rf-field and wake of two modules
transverse: use transport matrix
option 1: $\alpha x=-0.284, \beta x=0.976 m \mu x=0.328 * 2 \pi$ to $\alpha x=-0.284, \beta x=0.976 m \mu x=1.427 * 2 \pi$

$$
\alpha y=2, \quad \beta y=31.037 \mathrm{~m} \mu \mathrm{y}=1.427 * 2 \pi \quad \alpha y=2, \quad \beta y=30.021 \mathrm{~m} \mu \mathrm{y}=1.465 * 2 \pi
$$

option 2: ...
to $\alpha x=-0.495, \beta x=17.150 m \mu x=1.478 * 2 \pi$ $\alpha y=-0.152, \beta y=19.719 m \mu y=1.830 * 2 \pi$

method ...

6) calculate BC3 with projected method sub-bunch length $=3 \mu \mathrm{~m}$
reference plane $=1 \mathrm{~m}$ after BC

BC3 chicane description

2. no CSR
optics $=$ option 1

$$
\varphi_{\mathrm{rf}}=8 \mathrm{deg}
$$

before BC2

1m after BC2

1m after BC3

3. CSR "projected" optics = option $1 \varphi_{f f}=8 \mathrm{deg}$

CSR "projected" optics $=$ option $1 \quad \varphi_{\mathrm{rf}}=8 \mathrm{deg}$
before BC2

1m after BC2

1m after BC3

long. phase space in BC3

$$
\varphi_{\mathrm{rf}}=8 \mathrm{deg}
$$

horizontal

all particles:

$$
\text { emittance/um } \quad=10.1
$$

rms-length/um $=722$
rms-energy spread/keV $=1450$
"black" particles:
emittance/um
$=4.13$
rms-length/um $=5.6$
rms-energy spread/keV $=476$

CSR "projected"
optics $=$ option 2

$$
\varphi_{\mathrm{rf}}=8 \mathrm{deg}
$$

horizontal

all particles:

$$
\text { emittance/um } \quad=10.6
$$

rms-length/um

$$
=722
$$

rms-energy spread/keV = 1419
"black" particles:
emittance/um

$$
=3.63
$$

rms-length/um
$=6.8$
rms-energy spread/keV $=418$
4. CSR "projected" optics = option $1 \varphi_{\text {fif }}=12 \mathrm{deg}$

CSR "projected" optics = option $1 \quad \varphi_{\mathrm{rf}}=12 \mathrm{deg}$

all particles:
emittance/um $=10.55$
rms-length/um $=339$
rms-energy spread/keV $=1380$
"black" particles:
emittance/um $=4.56$
rms-length/um $=13.0$
rms-energy spread/keV $=324$

CSR "projected" optics = option $2 \quad \varphi_{\mathrm{rt}}=12 \mathrm{deg}$

all particles:

emittance/um $=10.74$
rms-length/um $=338$
rms-energy spread/keV $=1380$
"black" particles:
emittance/um
$=5.43$
rms-length/um
$=13.8$
rms-energy spread/keV $=313$
5. CSR "projected" optics = option $1 \varphi_{\text {if }}=7 \mathrm{deg}$

1m after BC3

CSR "projected" optics = option $1 \quad \varphi_{\mathrm{rf}}=7 \mathrm{deg}$

all particles:

$$
\text { emittance/um } \quad=3.38
$$

rms-length/um $=923$
rms-energy spread/keV $=880$
"black" particles:
emittance/um
$=2.06$
rms-length/um
$=4.2$
rms-energy spread/keV $=256$
6. some LOLA pictures

optics = option 1
$\varphi_{\mathrm{rf}}=8 \mathrm{deg}$

optics = option 1 $\varphi_{\mathrm{rf}}=12 \mathrm{deg}$

7. conclusion / remarks

1. settings and beam parameters only known to a certain precision
2. CSR model for TTF2 with space charge in ACC1, "projected" method in BC2 \& BC3, transport matrix for $\mathrm{BC} 2 \rightarrow \mathrm{BC} 3$, ACC4 \rightarrow undulator not considered jet
3. ASTRA calculations for $\mathrm{BC} 2 \rightarrow \mathrm{BC} 3$ and $\mathrm{ACC} 4 \rightarrow$ undulator in preparation "projected" CSR calculations in ASTRA in principle possible
4. "3D" CSR calculations with full- \& over-compression difficult (variable sub-bunch needed due to long tails \leftrightarrow meshed green's function) "projected" CSR calculations need better smoothing/filter-algorithms
5. qualitative understanding of compression process, complicated interaction of "full" compressed part to rest of bunch
6. qualitative agreement with LOLA pictures
7. optics "option 1" and "weak over-compression" in BC2 seems preferable

in_file $=$ "../bc1/out_pr_8deg/end.fmt3"

$$
\mathrm{T}_{\mathrm{k}, 6}=-16.013
$$

$\mathrm{T}_{\mathrm{k}, 5} \cdot 10^{6}=2.738$

$\mathrm{T}_{\mathrm{k}, 7}=21.86$

