about kick factors, symmetries & compensation

FLASH setup

XFEL assumptions

calculation of rf kick factors

tracking (based on XFEL EXCEL table)

summary

discrete coupler kick:

$$V_{z}(x, y, s) \approx V_{cav} \cos(\varphi_{cav} - ks)$$
$$V_{x}(x, y, s) \approx \operatorname{Re} \left\{ V_{cav} e^{i(\varphi_{cav} - ks)} \cdot V_{x}^{(n)}(x, y) \right\}$$
$$V_{y}(x, y, s) \approx \operatorname{Re} \left\{ V_{cav} e^{i(\varphi_{cav} - ks)} \cdot V_{y}^{(n)}(x, y) \right\}$$

Taylor expansion: $V_x^{(n)}(x, y) \approx d_0 + d_x x + d_y y$ $V_y^{(n)}(x, y) \approx f_0 + f_x x + f_y y$

compensation of s- (or time-) dependent fields:

$$V_{x}(0,0,s) \approx \operatorname{Re}\left\{V_{\operatorname{cav}}e^{i(\varphi_{\operatorname{cav}}-ks)} \cdot d_{0}\right\} = \operatorname{Re}\left\{V_{\operatorname{cav}}d_{0}e^{i\varphi_{\operatorname{cav}}}\right\} \cos ks + \operatorname{Im}\left\{V_{\operatorname{cav}}d_{0}e^{i\varphi_{\operatorname{cav}}}\right\} \sin ks$$

$$\rightarrow \operatorname{Im}\left\{V_{\operatorname{cav}}d_{0}e^{i\varphi_{\operatorname{cav}}}\right\} = 0$$

$$\operatorname{arg}\left\{d_{0}\right\} = -\varphi_{\operatorname{cav}}$$
depends on cavity phase depends on scenario

from http://www.desy.de/~dohlus/2007/2007.07.ckick/ckick2.pdf

FLASH setup

→ horizontal rotation = "yrot"

XFEL assumptions

initial particle distribution: tracked with ASTRA as described in http://www.desy.de/xfel-beam/data/talks/talks/dohlus_-_comp_of_ckick_3_20080225.pdf 25. Feb. 2008, beam dynamics seminar reference solution without coupler kicks in TESLA modules

≈ parameters for 20 x 5 compression (= present design) $φ_{1st} ≈ 2deg; φ_{3rd} ≈ 146.6deg (spatial phases); V_{3rd} ≈ 92 MV$

3rd harmonic section EXCEL table: 2 modules = 24 cavities discrete kicks of 48 couplers (effect depends on field not on number of cavities)

XFEL assumptions

Considerations on the third harmonic rf of the European XFEL

SRF 2007 Workshop

Considerations on the third harmonic rf of the European XFEL

E. Vogel², M. Dohlus², H. Edwards¹, E. Harms¹, M. Huening², K. Jensch², T. Khabiboulline¹, A. Matheisen², W.-D. Moeller², A. Schmidt² and W. Singer²

Figure 4: Possible cavity arrangements for installing the power couplers alternately opposite to each other.

calculation of rf kick factors a) Timergali's HFSS calculation

calculation of rf kick factors a) Timergali's HFSS calculation - in detail

only forward wave (a=0):
upstream
$$\frac{1}{V_z} \begin{pmatrix} V_x \\ V_y \end{pmatrix} = \begin{pmatrix} -339 + j44 \\ -61 + j45 \end{pmatrix} \cdot 10^{-6} \quad \text{downstream} \quad \frac{1}{V_z} \begin{pmatrix} V_x \\ V_y \end{pmatrix} = \begin{pmatrix} -78 - j263 \\ 26 + j99 \end{pmatrix} \cdot 10^{-6}$$

only backward wave (b=0):

the numbers deviate less than 10^{-7} from the values for forward wave

therefore:

the coupler kick depends essentially on the SW part of the field it does not depend on the reflection coefficient at the input coupler

calculation of rf kick factors b) MWS calculation for 2 cells, scaled

results are quite uncertain:

HFSS very noisy MWS two cells are not enough both calculations: discretized beam pipe is too short (cancellation effects in integrated kick) systematic difference in accelerating field and in Qext

calculation of rf kick factors comparison of HFSS & MWS fields

calculation of rf kick factors b) MWS calculation for 2 cells, scaled

but MWS results are smooth enough to estimate spatial derivatives of kicks:

upstream
$$\frac{1}{V_z} \frac{\partial}{\partial x} \begin{pmatrix} V_x \\ V_y \end{pmatrix} \approx \begin{pmatrix} -44 - j34 \\ 28 - j67 \end{pmatrix} \cdot \frac{10^{-3}}{m}$$
 downstream $\frac{1}{V_z} \frac{\partial}{\partial x} \begin{pmatrix} V_x \\ V_y \end{pmatrix} \approx \begin{pmatrix} -3.5 - j53 \\ 33 + j75 \end{pmatrix} \cdot \frac{10^{-3}}{m}$
 $\frac{1}{V_z} \frac{\partial}{\partial y} \begin{pmatrix} V_x \\ V_y \end{pmatrix} \approx \begin{pmatrix} 28 - j66 \\ 44 + j34 \end{pmatrix} \cdot \frac{10^{-3}}{m}$ $\frac{1}{V_z} \frac{\partial}{\partial y} \begin{pmatrix} V_x \\ V_y \end{pmatrix} \approx \begin{pmatrix} 33 + j75 \\ 3.5 + j53 \end{pmatrix} \cdot \frac{10^{-3}}{m}$

for comparison: TESLA cavity
upstream
$$\frac{1}{V_z} \frac{\partial}{\partial x} \begin{pmatrix} V_x \\ V_y \end{pmatrix} \approx \begin{pmatrix} 1.0 - j0.7 \\ 3.4 + j0.2 \end{pmatrix} \cdot \frac{10^{-3}}{m}$$
 downstream $\frac{1}{V_z} \frac{\partial}{\partial x} \begin{pmatrix} V_x \\ V_y \end{pmatrix} \approx \begin{pmatrix} -3.7 - j2.0 \\ 3.0 + j0.5 \end{pmatrix} \cdot \frac{10^{-3}}{m}$
 $\frac{1}{V_z} \frac{\partial}{\partial y} \begin{pmatrix} V_x \\ V_y \end{pmatrix} \approx \begin{pmatrix} 3.4 + j0.2 \\ -1.1 + j0.6 \end{pmatrix} \cdot \frac{10^{-3}}{m}$ $\frac{1}{V_z} \frac{\partial}{\partial y} \begin{pmatrix} V_x \\ V_y \end{pmatrix} \approx \begin{pmatrix} 3.0 + j0.5 \\ 3.8 + j1.9 \end{pmatrix} \cdot \frac{10^{-3}}{m}$

 $\frac{1}{V_z} \begin{pmatrix} V_x \\ V_y \end{pmatrix}$ for one 3rd harm. cavity is about 5...10 times larger than for one TESLA cavity

total kick (= Σ) of all 3rd harm cavities before BC1 is about 100 to 200% of that of all TESLA cavities

 $\frac{1}{V_z} \frac{\partial}{\partial x} \begin{pmatrix} V_x \\ V_y \end{pmatrix}$ for one 3rd harm. cavity is about 10...50 times larger

calculation with HFSS kicks, offset independent

upstream
$$\frac{1}{V_z} \begin{pmatrix} V_x \\ V_y \end{pmatrix} = \begin{pmatrix} -339 + j44 \\ -61 + j45 \end{pmatrix} \cdot 10^{-6} \qquad \text{downstream } \frac{1}{V_z} \begin{pmatrix} V_x \\ V_y \end{pmatrix} = \begin{pmatrix} -78 - j263 \\ 26 + j99 \end{pmatrix} \cdot 10^{-6}$$
$$\frac{1}{V_z} \frac{\partial}{\partial x} \begin{pmatrix} V_x \\ V_y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \frac{10^{-3}}{m}$$
$$\frac{1}{V_z} \frac{\partial}{\partial x} \begin{pmatrix} V_x \\ V_y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \frac{10^{-3}}{m}$$
$$\frac{1}{V_z} \frac{\partial}{\partial y} \begin{pmatrix} V_x \\ V_y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \frac{10^{-3}}{m}$$

	\mathcal{E}_{xn} / μm	$\varepsilon_{yn}/\mu m$
no coupler kicks	0.926	0.969
identical orientation	1.812	1.002
yrot of each second	1.278	1.010
zrot of each second	0.940	0.984

calculation with HFSS kicks, offset independent identical orientation

 $\varepsilon_{xn} / \varepsilon_{xn0} = 1.96$

$$\varepsilon_{\rm yn}$$
 / $\varepsilon_{\rm yn0}$ = 1.03

tracking (based on XFEL EXCEL table)

calculation with HFSS kicks, offset independent yrot of each 2nd

 ε_{xn} / ε_{xn0} = 1.38

 $\varepsilon_{yn} / \varepsilon_{yn0} = 1.04$

-0.001

0

0.001

0.002 0.003 0.004 *z*/m

tracking (based on XFEL EXCEL table)

calculation with HFSS kicks, offset independent zrot of each 2nd

 ε_{xn} / ε_{xn0} = 1.02

$$\varepsilon_{yn} / \varepsilon_{yn0} = 1.02$$

calculation with MWS kicks

$$\text{upstream } \frac{1}{V_z} \begin{pmatrix} V_x \\ V_y \end{pmatrix} = \begin{pmatrix} -496 + j202 \\ -96 + j222 \end{pmatrix} \cdot 10^{-6} \quad \text{downstream } \frac{1}{V_z} \begin{pmatrix} V_x \\ V_y \end{pmatrix} = \begin{pmatrix} -267 - j672 \\ 45 + j340 \end{pmatrix} \cdot 10^{-6}$$

$$\frac{1}{V_z} \frac{\partial}{\partial x} \begin{pmatrix} V_x \\ V_y \end{pmatrix} = \begin{pmatrix} -44 - j34 \\ 28 - j67 \end{pmatrix} \cdot \frac{10^{-3}}{\text{m}} \quad \frac{1}{V_z} \frac{\partial}{\partial x} \begin{pmatrix} V_x \\ V_y \end{pmatrix} = \begin{pmatrix} -3.5 - j53 \\ 33 + j75 \end{pmatrix} \cdot \frac{10^{-3}}{\text{m}}$$

$$\frac{1}{V_z} \frac{\partial}{\partial y} \begin{pmatrix} V_x \\ V_y \end{pmatrix} = \begin{pmatrix} 28 - j66 \\ 44 + j34 \end{pmatrix} \cdot \frac{10^{-3}}{\text{m}} \quad \frac{1}{V_z} \frac{\partial}{\partial y} \begin{pmatrix} V_x \\ V_y \end{pmatrix} = \begin{pmatrix} 33 + j75 \\ 3.5 + j53 \end{pmatrix} \cdot \frac{10^{-3}}{\text{m}}$$

	\mathcal{E}_{xn} / μm	$\varepsilon_{yn}/\mu m$
no coupler kicks	0.926	0.969
identical orientation	3.304	1.377
yrot of each second	1.948	1.417
zrot of each second	0.953	0.988

calculation with MWS kicks identical orientation

2 57

0.002

0.001

-0.000

-0.002 <u>*</u> -0.004 -0.003

-0.002 -0.001

$$\varepsilon_{xn} / \varepsilon_{xn0} = 3.57$$

$$\int_{x/m_{000}}^{000} \frac{1}{y/m_{000}} + \frac{1}{y/m_{000}} +$$

0.004 *z*/m

0.002

0.001

0

0.003

1.10

-1.10

-2.10⁻⁴ _____ -0.004 -0.003

-0.002 -0.001

0

0.003 0.004 *z*/m

0.002

0.001

calculation with MWS kicks yrot of each 2nd

 ε_{xn} / ε_{xn0} = 2.10

$$\varepsilon_{yn} / \varepsilon_{yn0} = 1.46$$

calculation with MWS kicks zrot of each 2nd

 ε_{xn} / ε_{xn0} = 1.03

$$\varepsilon_{yn} / \varepsilon_{yn0} = 1.02$$

off crest operation of cavities: only "zrot" setup compensates offset independent kick completely; reduction of Re or Im does not help in general!

imprecise & uncertain calculation of rf kick factors offset independent kicks ~ 5..10 x larger than in TESLA cavities

tracking (based on XFEL EXCEL table) significant emittance growth for "identical orientation" and yrot setup below 3% emittance growth for zrot setup even for the worst kick numbers weak influence of offset dependency

"yrot" setup foreseen in FLASH; effects not investigated here

"zrot" setup recommended for XFEL

