Emittance Growth by Transverse Wakes Wakes from Surface Effects in Round Beam Pipes

from November: longitudinal wakes

relation to transverse wakes

emittance growth

s2e-meeting Nov. 2008 \rightarrow monopole wake

Wakes from Surface Effects in Round Beam Pipes
beam impedance and surface impedance
dielectric layer, roughness
parameters
Gaussian beam
s2e beam

C

relation between monopole and dipole wakes (round pipe)

monopole
$$Z_{\parallel}^{(m)} = \frac{Z_s}{2\pi R} \frac{1}{1 - jk \frac{R}{2} \frac{Z_s}{Z_0}}$$
$$Z_{\perp}^{(m)} = 0$$

dipole, source at x_0 , $y_0 = 0$, test at x, y

$$\begin{pmatrix} Z_{\perp}^{(d)} \\ 0 \\ Z_{\parallel}^{(d)} \end{pmatrix} = \frac{\mathbf{E}_d + c\mathbf{e}_z \times \mathbf{B}_d}{I_z = \lambda_0 c e^{-jkz}} = \frac{Z_s}{2\pi R} \frac{2x_0}{R^2} \frac{1}{1 - jk \frac{R}{2} \frac{Z_s}{Z_0}} \begin{pmatrix} j/k \\ 0 \\ x \end{pmatrix}$$

$$Z_{\parallel}^{(d)} = \frac{2xx_0}{R^2} Z_{\parallel}^{(m)}$$
$$Z_{\perp}^{(m)} = \frac{2jx_0}{kR^2} Z_{\parallel}^{(m)}$$

s2e beam

Holger's DA

XFEL

emittance growth

XFEL

 $\approx 1.7 \text{ m}^{-5} * 0.01 \text{ m}^{5}$

