compensation of rf coupler kicks 1st attempt, continued

general investigations: sources of emittance growth

detailed results for various conditions

local & global compensation

geometry

table of results

detailed results (local & global compensation)

more

old configuration

rotation of reference plane

invariants

		$ \begin{array}{l} \left\langle x \right\rangle = \left\langle y \right\rangle = 0 \left\langle x' \right\rangle = \left\langle y' \right\rangle = 0 \\ x' = p_x / p_z y' = p_y / p_z p_z \approx \text{const.} \\ \\ S_{xy} = \begin{bmatrix} \left\langle xx \right\rangle \left\langle xx' \right\rangle \left\langle xy \right\rangle \left\langle xy' \right\rangle \\ \left\langle xx' \right\rangle \left\langle x'x' \right\rangle \left\langle x'y \right\rangle \left\langle x'y' \right\rangle \\ \left\langle xy \right\rangle \left\langle x'y \right\rangle \left\langle yy \right\rangle \left\langle yy' \right\rangle \\ \left\langle xy' \right\rangle \left\langle x'y' \right\rangle \left\langle yy' \right\rangle \left\langle yy' \right\rangle \\ \end{array} \right $
no coupling:	$S_{xy} = \begin{bmatrix} \langle xx \rangle & \langle xx' \rangle & 0 & 0 \\ \langle xx' \rangle & \langle x'x' \rangle & 0 & 0 \\ 0 & 0 & \langle yy \rangle & \langle yy' \rangle \\ 0 & 0 & \langle yy' \rangle & \langle y'y' \rangle \end{bmatrix}$	$\left S_{xy}\right = \varepsilon_x^2 \varepsilon_y^2$ $\widetilde{\varepsilon} = \sqrt{\varepsilon_x \varepsilon_y} = \left S_{xy}\right ^{1/4}$
coupling:	$S_{uv} = \cdots = RS_{xy}R^T$	$\widetilde{\varepsilon} = \sqrt{\varepsilon_u \varepsilon_v} \neq \left S_{uv} \right ^{1/4}$
	$R = \begin{bmatrix} \cos\varphi & 0 & \sin\varphi & 0\\ 0 & \cos\varphi & 0 & \sin\varphi\\ -\sin\varphi & 0 & \cos\varphi & 0\\ 0 & -\sin\varphi & 0 & \cos\varphi \end{bmatrix}$	uv-emittance can be measured $\varphi_{\min} : \widetilde{\varepsilon} \to \min \widetilde{\varepsilon} = \sqrt{\varepsilon_u \varepsilon_v} \approx S_{uv} ^{1/4}$ but: $\begin{bmatrix} \langle uv \rangle & \langle uv' \rangle \\ \langle u'v \rangle & \langle u'v' \rangle \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

configuration	norm. xy-emittance full,relative slice,relative			norm. uv-emittance full,relative slice,relative				offset x/mm y/mm		
	$\frac{\boldsymbol{\mathcal{E}}_{n,x,\text{full}}}{\boldsymbol{\mathcal{E}}_{n,\text{ref,full}}}$	$\frac{\boldsymbol{\mathcal{E}}_{n,y,\text{full}}}{\boldsymbol{\mathcal{E}}_{n,\text{ref,full}}}$	$\frac{\mathcal{E}_{n,x,\text{slice}}}{\mathcal{E}_{n,\text{ref,slice}}}$	$\frac{\boldsymbol{\mathcal{E}}_{n,y,\text{slice}}}{\boldsymbol{\mathcal{E}}_{n,\text{ref,slice}}}$	$\frac{\boldsymbol{\mathcal{E}}_{n,u,\text{full}}}{\boldsymbol{\mathcal{E}}_{n,\text{ref,full}}}$	$\frac{\boldsymbol{\mathcal{E}}_{\mathrm{n},\boldsymbol{\nu},\mathrm{full}}}{\boldsymbol{\mathcal{E}}_{\mathrm{n},\mathrm{ref},\mathrm{full}}}$	$\frac{\mathcal{E}_{\mathrm{n},u,\mathrm{slice}}}{\mathcal{E}_{\mathrm{n},\mathrm{ref},\mathrm{slice}}}$	$\frac{\boldsymbol{\mathcal{E}}_{n,\nu,\text{slice}}}{\boldsymbol{\mathcal{E}}_{n,\text{ref,slice}}}$		
old configuration	1.113	1.056	1.029	1.024	1.017	1.045	0.999	1.003	-0.681	-0.196
V=Re{v ₀ }+i Im{~x,y}	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	-0.683	-0.183
V=i Im{v ₀ }+Re{~x,y}	1.108	1.057	1.029	1.024	1.015	1.042	0.999	1.003	0.002	0.000
without coupling	1.059	1.000	1.000	1.001	1.059	1.000	1.001	1.000	-0.677	-0.183

some conclusions:

uv-emittance growth ~ 5% caused by time dependency of fields $Im\{V_{x,y}\}$ offset dependency of fields causes xy- but not uv-emittance growth more precise: it is the coupling term: $\partial_y V_x$, $\partial_x V_y$ beam offset caused by $Re\{V_{x,y}\}$

old configuration but: $\widetilde{V}_{\perp}(x, y) = \operatorname{Re}\{V_{\perp}(0, 0)\} + i \operatorname{Im}\{V_{\perp}(x, y) - V_{\perp}(0, 0)\}$

old configuration but: $\widetilde{V}_{\perp}(x, y) = i \operatorname{Im}\{V_{\perp}(0, 0)\} + \operatorname{Re}\{V_{\perp}(x, y) - V_{\perp}(0, 0)\}$

old configuration but without coupling: $\widetilde{V}_x(x, y) = V_x(0,0) + x \cdot \partial_x V_x(0,0)$ $\widetilde{V}_y(x, y) = ...$

compensation of coupler kick

z-mirror of cavities 2,4,6,8

comp 8 = reduce real part of Σ -kick

comp 9 = reduce imag. part of Σ -kick

global: zrot=180deg of cavities 2,4,6,8

global: xrot=180deg of cavities 2,4,6,8

global: yrot=180deg of cavities 2,4,6,8

global: z-mirror of cavities 2,4,6,8

configuration	norm. xy-emittance full,relative slice,relative			norm. uv-emittance full,relative slice,relative				offset x/mm y/mm		
	$\frac{\boldsymbol{\mathcal{E}}_{n,x,\text{full}}}{\boldsymbol{\mathcal{E}}_{n,\text{ref,full}}}$	$\frac{\boldsymbol{\mathcal{E}}_{n,y,\text{full}}}{\boldsymbol{\mathcal{E}}_{n,\text{ref,full}}}$	$\frac{\boldsymbol{\mathcal{E}}_{n,x,\text{slice}}}{\boldsymbol{\mathcal{E}}_{n,\text{ref,slice}}}$	$\frac{\boldsymbol{\mathcal{E}}_{n,y,\text{slice}}}{\boldsymbol{\mathcal{E}}_{n,\text{ref,slice}}}$	$\frac{\boldsymbol{\mathcal{E}}_{\mathrm{n},u,\mathrm{full}}}{\boldsymbol{\mathcal{E}}_{\mathrm{n},\mathrm{ref},\mathrm{full}}}$	$\frac{\boldsymbol{\mathcal{E}}_{n,\nu,\text{full}}}{\boldsymbol{\mathcal{E}}_{n,\text{ref,full}}}$	$\frac{\boldsymbol{\mathcal{E}}_{n,u,slice}}{\boldsymbol{\mathcal{E}}_{n,ref,slice}}$	$\frac{\boldsymbol{\mathcal{E}}_{n,\nu,\text{slice}}}{\boldsymbol{\mathcal{E}}_{n,\text{ref,slice}}}$		
old configuration	1.113	1.056	1.029	1.024	1.017	1.045	0.999	1.003	-0.681	-0.196
local: comp8 (1)	1.172	1.066	1.027	1.025	1.090	1.044	0.999	1.004	0.203	-0.174
comp9 (1,2)	1.053	1.066	1.025	1.025	0.997	1.014	0.998	1.004	-0.495	0.578
global: z-rot (2,4)	1.058	1.056	1.028	1.024	0.994	1.008	0.999	1.003	-0.117	-0.034
x-rot (2,3)	1.052	1.033	1.018	1.014	1.003	1.017	0.999	1.002	-0.243	-0.226
y-rot (4)	1.046	1.033	1.018	1.014	0.999	1.015	0.999	1.002	-0.551	0.000
z-mirror (1,3)	1.057	1.002	1.002	1.001	1.007	1.051	1.000	1.001	-0.151	-0.107

(1) modify cavity; (2) interference with cavity environment expected

(3) modify cryostat & 1-side power distribution

(4) modify cryostat & 2-side power distribution

global: z-mirror of cavities 2,4,6,8

more

phase space after ACC5; all modules on crest

slice centroid, phase = +- $2mm \cdot 2\pi/\lambda$

Т	YPE	ENERGY	MUX/ 2π	MUY/27	τ
C	AV	0.0155	0.4665	0.467	
C	XAV	0.0260	0.4853	0.485	
C	AV.	0.0365	0.4952	0.495	
C	:AV	0.0470	0.5019	0.502	
C	:AV	0.0677	0.5071	0.507	
C	:AV	0.0885	0.5117	0.512	
C	XAV	0.1092	0.5161	0.516	
C	:AV	0.1300	0.5206	0.521	
C	XAV	0.1447	2.4721	2.798	
C	:AV	0.1594	2.4808	2.806	
C	:AV	0.1741	2.4898	2.815	
C	:AV	0.1888	2.4990	2.825	
C	:AV	0.2034	2.5086	2.834	
C	:AV	0.2181	2.5185	2.844	
C	:AV	0.2328	2.5286	2.854	
C	:AV	0.2475	2.5391	2.864	
C	:AV	0.2622	2.5583	2.880	
C	:AV	0.2769	2.5726	2.888	
C	:AV	0.2916	2.5894	2.896	
C	:AV	0.3062	2.6091	2.902	
C	AV.	0.3209	2.6317	2.908	
C	AV.	0.3356	2.6570	2.914	
C	AV.	0.3503	2.6840	2.918	
C	AV.	0.3650	2.7114	2.923	
C	AV.	0.3797	2.7489	2.930	
C	AV.	0.3944	2.7635	2.936	
C	AV.	0.4091	2.7744	2.944	
C	AV.	0.4237	2.7828	2.954	
C	AV.	0.4384	2.7894	2.968	
C	AV.	0.4531	2.7948	2.988	
C	AV.	0.4678	2.7992	3.019	
C	AV.	0.4825	2.8030	3.064	
C	AV.	0.4972	2.8088	3.157	
C	AV.	0.5119	2.8131	3.195	
C	XAV	0.5266	2.8181	3.222	
C	AV.	0.5412	2.8242	3.240	
C	AV	0.5559	2.8317	3.253	
C	AV	0.5706	2.8411	3.263	
C	AV.	0.5853	2.8531	3.271	
C	:AV	0.6000	2,8688	3.277	

