XFEL-BC2 @ 2.5 GeV vs compression, chirp $=9.634 \mathrm{MeV} / 100 \mu \mathrm{~m}$

$$
\begin{array}{rlrr}
I_{\text {peak }} / \mathrm{kA}(\mathrm{no} \mathrm{CSR})=5.5 & \text { compression }=5 & \mathrm{R} 56 / \mathrm{mm}= & -20.76 \\
10 & 9.1 & \mathrm{R}_{\text {bend }} / \mathrm{m}=8.890 \\
15 & 13.6 & -23.10 & 8.430 \\
20 & 18.2 & -24.05 & 8.261 \\
30 & 27.3 & -24.52 & 8.181 \\
40 & 36.4 & -25.00 & 8.103 \\
\infty & \text { full } & -25.24 & 8.065 \\
40 & -36.4 & -25.95 & 7.953 \\
20 & -18.2 & -26.67 & 7.846 \\
& -27.38 & 7.744
\end{array}
$$

initial distribution: ideal gaussian, $q=1 \mathrm{nC}, \sigma=100 \mu \mathrm{~m}$, $\mathrm{dE}=5 \mathrm{keV} @ 50 \mathrm{~A}$

$$
\begin{aligned}
& \varepsilon_{\mathrm{nx}}=10^{-6}, \beta_{\mathrm{x}}=47.5 \mathrm{~m}, \alpha_{x}=2.3 \\
& \sigma_{\mathrm{y}}=100 \mu \mathrm{~m} \cdot(1000 / \gamma)^{1 / 2}
\end{aligned}
$$

XFEL-BC2 @ 2.5 GeV vs compression, chirp $=9.634 \mathrm{MeV} / 100 \mu \mathrm{~m}$

(no CSR)		(slice)	(proj)	(slice)
$\mathrm{I}_{\text {peak }} / \mathrm{kA}=5.5$	Ipeak/kA ≈ 5.5	emitt. ≈ 1.01	emitt. ≈ 2.0	$\mathrm{RMS}(\mathrm{dE}) / \mathrm{MeV} \approx 0.45$
10	9.7	1.08	3.3	0.8
15	14.8	1.25	5.4	1.2
20	19.1	2	7	2
30	31.9	3.1	12	4
40	41.3	6	16	5
∞	68.1	16	27	7.5
40	76	14	19	7
20	43	3.1	11	4
				projected method numbers: from plots by eye

$$
\mathrm{I}_{\text {peak }} / \mathrm{kA}(\text { no CSR })=5.5
$$

slice with I peak: Green's projected

$$
I_{\text {peak }} / \mathrm{kA}(\text { no CSR })=10
$$

slice with I_peak:
$\mathrm{cf}=9.1$
Green's projected
emittance $(\mathrm{x} 1)=1.017 \times 10^{-6}$
emittance $(\mathrm{x} 2)=1.006 \times 10^{-6}$
$\mathrm{E} 0=2.5 \times 10^{9}$

$$
\begin{aligned}
& \text { emittance }(\mathrm{X} 1)=3.551 \times 10^{-6} \\
& \text { emittance }(\mathrm{X} 2)=3.297 \times 10^{-6}
\end{aligned}
$$

$$
\mathrm{I}_{\text {peak }} / \mathrm{kA}(\text { no CSR })=15
$$

slice with I_peak:
$c f=13.6$
Green's projected

RMS(de)/MeV

normalized emittance * $10^{\wedge} 6$

bunch current $/ \mathrm{kA}$

twiss: beta

$$
\mathrm{I}_{\text {peak }} / \mathrm{kA}(\text { no CSR) }=20
$$

slice with I peak:
cf=18.2
Green's projected
emittance $(\mathrm{x} 1)=1.833 \times 10^{-6}$
emittance $(\mathrm{x} 2)=1.554 \times 10^{-6}$ slice
$\mathrm{E} 0=2.5 \times 10^{9}$
emittance $(\mathrm{X} 1)=8.354 \times 10^{-6}$ full
emittance $(\mathrm{X} 2)=6.911 \times 10^{-6}$

$$
I_{\text {peak }} / k A(\text { no CSR })=30
$$

slice with I peak:
$\mathrm{cf}=27.3$
Green's projected

RMS(de) $/ \mathrm{MeV}$

$$
\mathrm{I}_{\text {peak }} / \mathrm{kA}(\text { no CSR })=40
$$

slice with I peak:
$\mathrm{cf}=36.4$
Green's projected
emittance $(\mathrm{x} 2)=5.883 \times 10^{-6}$
slice
$\mathrm{E} 0=2.5 \times 10$

RMS (de)/MeV

$$
\mathrm{I}_{\text {peak }} / \mathrm{kA}(\text { no CSR) }=\text { full }
$$

slice with I_peak:
cf=full
Green's projected

RMS(de)/MeV

$$
\mathrm{I}_{\text {peak }} / \mathrm{kA}(\text { no CSR) }=40 \text { (overc.) }
$$

slice with I peak:
$\mathrm{cf}=-36.4$
Green's projected

RMS(de)/MeV

normalized emittance * $10^{\wedge} 6$

$$
\mathrm{I}_{\text {peak }} / \mathrm{kA} \text { (no CSR) = } 20 \text { (overc.) }
$$

slice with I peak:
cf=-18.2
Green's projected

RMS(de)/MeV

