3-BC Working Points for 0.5 and 1.0 nC

tool/method – how to find working points (1D with CSR)

example (1nC)

example (0.5nC)

some remarks

Tool / Method

non-linear param.: e0" (knobs) e0""

my definition:
$$e0'' = \frac{E_0''}{k^2 E_0}$$
 $e0''' = \frac{E_0'''}{k^3 E_0}$

Tool / Method

non-linear param.: e0" (knobs) e0"

few iterations to adjust e0" and e0""

Tool / Method

3. track with ...&...&CSR: in \rightarrow a1

re-adjust rf0 parameters: E0; rms{a1-a}=min in \rightarrow a2 \rightarrow (1d-CSRtrack) \rightarrow b2,c1 re-adjust rf1 parameters: E1; rms{c1-c}=min in \rightarrow a2,b2,c2 \rightarrow (1d-CSRtrack) \rightarrow d2,e1 re-adjust rf2 parameters: E2; rms{e1-e}=min in \rightarrow a2,b2,c2,d2,e2 \rightarrow (1d-CSRtrack) \rightarrow out1

procedure takes about 30 min total compression not quite perfect few iterations to adjust e0" and e0"

\rightarrow (1d-CSRtrack) \rightarrow

(matlab-controller)

in = longitudinal phase space

create lattice with design q56 \rightarrow csrtrk.in

create artificial transverse phase space ($\varepsilon_n \approx 1 \,\mu m$, initial β , focus at last magnet)

run CSRtrack

{look for transverse properties}

extract longitudinal phase space \rightarrow out

example (1nC)

without self effects

e0ss =0.0; e0sss=0.0; e0ss =0.5; e0sss=0.0;

example (1nC)

without self effects

e0ss =0.75; e0sss=0.0; e0ss =0.82; e0sss=0.0; e0ss =0.88; e0sss=0.0;

example (1nC)

with wakes, without CSR

e0ss =0.75; e0sss=0.0; e0ss =0.82; e0sss=0.0; e0ss =0.88; e0sss=0.0;

example (1nC)

with wakes & CSR

e0ss =0.68; e0sss=0.0; e0ss =0.75; e0sss=0.0; e0ss =0.82; e0sss=0.0;

example (1nC)

with wakes & CSR

e0ss =0.68; e0sss=0.0;

M Figure 1

-5 -

5.05

4.95

4.9

60

40

20

1500

1000

500

example (1nC)

with wakes & CSR

 $\frac{\hat{I}}{\mathrm{kA}} \approx 5.60$

 $\frac{\hat{I}}{\mathrm{kA}} \approx 5.15$

, D

 $\frac{\hat{I}}{kA} \approx 4.62$ $\mathcal{E}_{x,n} = 2.16 \,\mu\text{m}$

some remarks

its is easy to find working points (on the computer)

slight rollover of tails

same peak current with 0.5 nC:

reduce effects before BC3 \rightarrow double BC3 compression

tighter tolerances

same LH power \rightarrow twice uncorrelated energy spread

same energy spread \rightarrow \approx increased $\mu B\text{-}gain$

stronger CSR effects in BC3

$$E_{\rm CSR} \propto \frac{q}{\sigma^{4/3}} \propto \frac{I}{\sqrt[3]{\sigma}}$$

(steady state, R ~ const, same peak current)

effects after BC3 are not decreased / might be increased

1.0nC

0.5nC

C_tot*∆E_LH

