

Beam Based Alignment in the Undulator

Winni Decking XFEI Beam Dynamics Meeting 10.04.06

Assumptions

• Beam with $\varepsilon_n = 1 \text{ mm mrad}$, 17.5 GeV, $<\beta_{und} > \approx 30 \text{ m}$

	SASE	USER
X _{rms}	3 μm	
x' _{rms}	0.1 μrad	0.1 μrad
Timing		Measured to an accuracy < 30 fs

Unofficial quote: Conservative Assumption

Alignment Tolerance Quadrupole

- Ballistic Correction:
 - find straight line through BPMs in the absence of quadrupole fields
 - switch on quadrupoles and steer towards this value
 - limited by BPM resolution
 - field free almost impossible
 - may require optics rematch
 - may lead to losses in undulator

- Beam Based Alignment
 - vary quadrupole field strength and monitor BPM reading change downstream
 - change beam position in quadrupole (or quadrupole position) and redo
 - robust
 - time consuming
 - vulnerable against quad-center changes
 - only centers quad, no correction of other kicks

- Dispersion Free Steering
 - measure off energy trajectory and determine dispersion
 - minimize dispersion (and orbit)
 - BPM resolution limited
 - no magnet changes required if within ± 3% energy band
 - corrects for all kicks

Simulations

- Quad_{RMS}=100 μ m
- BPM Alignment_{RMS}=100 μm
- BPM Resolution_{RMS}=0.1 1 μ m
- Momentum change by ± 3 %
- MAD Optic Server
- MATLAB Orbit Correction toolbox (as used in TTF)

Simulation 1 μ m BPM Resolution

Winni Decking

Simulation 0.1 µm BPM Resolution

Winni Decking

Simulation 0.01 μm BPM Resolution

Winni Decking

- Successful DFS needs BPM resolution of 10 nm
- Resolution maybe obtained by averaging
- Resolution can be relaxed with larger energy change, needs magnet scaling
- More simulations with more errors needed