
Simulated LOLA Measurements

```
LOLA setup
imaging: entrance-LOLA to OTR
about reconstruction method of filamentary phase space
simulated LOLA measurement*: no transverse beam dimensions
simulated LOLA measurement*: gaussian transverse shape
about coupler kick (=CK)
simulated LOLA measurement*: no emittance but CK
simulated LOLA measurement*: gaussian transv. + CK
simulated LOLA measurement*: CSR + CK
summary
```

* measurements 16th June 2010, see s2e-meeting in Oct.

middle compression is not understood

LOLA setup

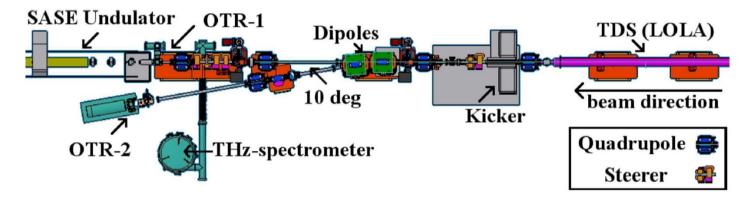


Figure: Aktuelles Design: Installiert im Februar 2010.

LOLA L = 3.826 m; 2.856 GHz Drift L = 2.693 m Bend L = 0.447 m; -5 deg Drift L = 0.131 m Bend L = 0.447 m; -5 deg Drift L = 4.481 m OTR 17.5 µm / pixel

LOLA setup

field expansion in LOLA close to axis (for symmetry PEC in xz-plane and PMC in yz-plane)

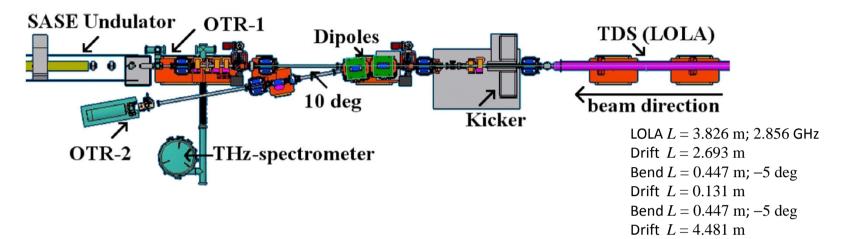
$$\mathbf{E}(\mathbf{r},\mathbf{t}) = \operatorname{Re} \left\{ \begin{pmatrix} 0 \\ E_{y,0}(z) \\ E_{z,y}(z)y \end{pmatrix} \exp(j\omega t) \right\}$$
$$\mathbf{B}(\mathbf{r},\mathbf{t}) = \operatorname{Re} \left\{ \begin{pmatrix} B_{x,0}(z) \\ 0 \\ B_{z,x}(z)x \end{pmatrix} \exp(j\omega t) \right\}$$

with
$$E_{z,y} - E'_{y,0} = -j\omega B_{x,0}$$

 $\mathbf{E} + \mathbf{v} \times \mathbf{B} \approx \operatorname{Re} \left\{ \begin{pmatrix} B_{z,x} x v_y \\ E_{y,0} + B_{x,0} v_z - B_{z,x} x v_y \\ E_{z,y} y - B_{x,0} v_y \end{pmatrix} e^{j\omega t} \right\} = \operatorname{Re} \left\{ \begin{pmatrix} 0 \\ E_{y,0} + B_{x,0} v_z \\ (-j\omega B_{x,0} + E'_{y,0}) y - B_{x,0} v_y \end{pmatrix} e^{j\omega t} \right\} + O^2$

we need the transverse field on axis: $E_{y,0}(z), B_{x,0}(z)$

LOLA setup

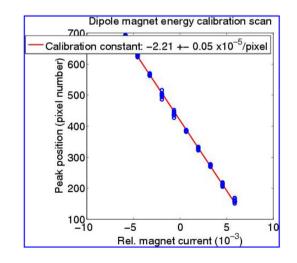

approach
$$E_{y,0} + cB_{x,0} = \hat{E}(z)e^{-jk_0 z}$$
 with $k_0 = \frac{\omega}{c}$
 $v_z = c$ and $\hat{E}(z)$ slowly compared to cell length
 $v_y = 0$

$$V_{y} = \int \hat{E}(z-s)e^{-jk_{0}(z-s)}e^{j\frac{\omega}{c}z}dz = e^{jk_{0}s}\int \hat{E}(z)dz$$

$$V_{z} = \dots = -j\frac{\omega}{c}ye^{jk_{0}s}\int \hat{E}(z)dz$$
(Panofsky-Wenzel theorem)

LOLA cavity, in reasonable approximation:

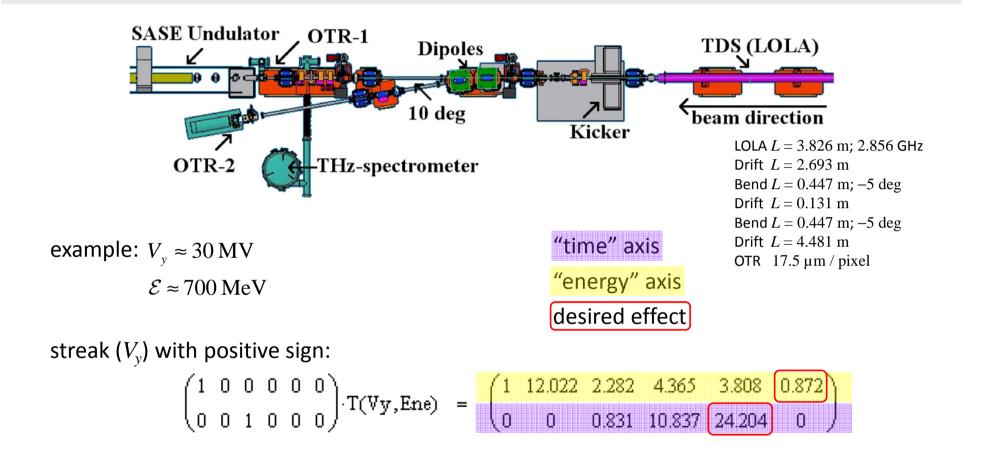
imaging: entrance-LOLA to OTR


full imaging function entrance-LOLA to OTR

energy calibration; theoretically:

$$\frac{d\mathcal{E}/\mathcal{E}}{\text{pixel}} = 2.007 \cdot 10^{-5}$$

streak calibration; theoretically:


$$\frac{S}{\text{fsec/pixel}} = 17.23 \frac{\mathcal{E}/\text{GeV}}{\sqrt{P/\text{MW}}}$$

OTR $17.5 \,\mu\text{m}$ / pixel

imaging: entrance-LOLA to OTR

streak with negative sign, "time" axis flipped:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{pmatrix} \cdot T(-\nabla y, Ene) = \begin{pmatrix} 1 & 12.022 & -2.282 & -4.365 & 3.808 & 0.872 \\ 0 & 0 & -0.831 & -10.837 & 24.204 & 0 \end{pmatrix}$$

imaging: entrance-LOLA to OTR

example: $V_y \approx 30 \text{ MV}$ $\mathcal{E} \approx 700 \text{ MeV}$

"time" axis "energy" axis desired effect

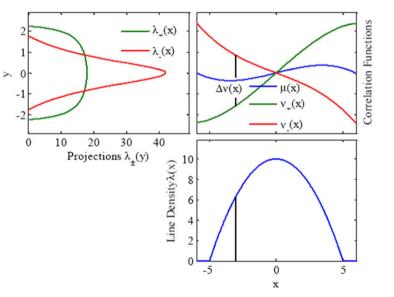
streak (V_{v}) with positive sign:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \cdot T(\forall y, Ene) = \begin{pmatrix} 1 & 12.022 & 2.282 & 4.365 & 3.808 & 0.872 \\ 0 & 0 & 0.831 & 10.837 & 24.204 & 0 \end{pmatrix}$$

streak with negative sign, "time" axis flipped:

 $\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{pmatrix} \cdot T(-Vy, Ene) = \begin{pmatrix} 1 & 12.022 & -2.282 & -4.365 & 3.808 & 0.872 \\ 0 & 0 & -0.831 & -10.837 & 24.204 & 0 \end{pmatrix}$

imaging of long phase space to "time" & "energy" is not changed by sign of streak significant "time" \rightarrow "energy" crosstalk for large streak no crosstalk horizontal phase space to "time" crosstalk horizontal to "energy" does not change with sigh of streak crosstalk vertical to "time" & "energy" flips with sigh of streak symmetric vertical phase space \rightarrow LOLA picture does not change with sign of streak

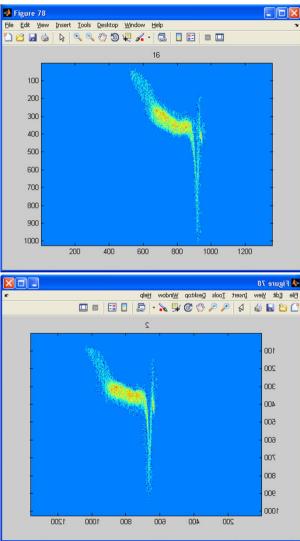


about reconstruction of filamentary phase space

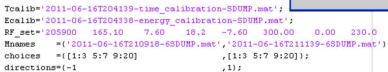
based on the assumption of an filamentary phase space, a reconstruction method from two measurements with different sign of streak is proposed:

Reconstruction of a Filamentary Phase Space from two Projections

H. Loos[†], SLAC, Menlo Park, CA 94025, USA

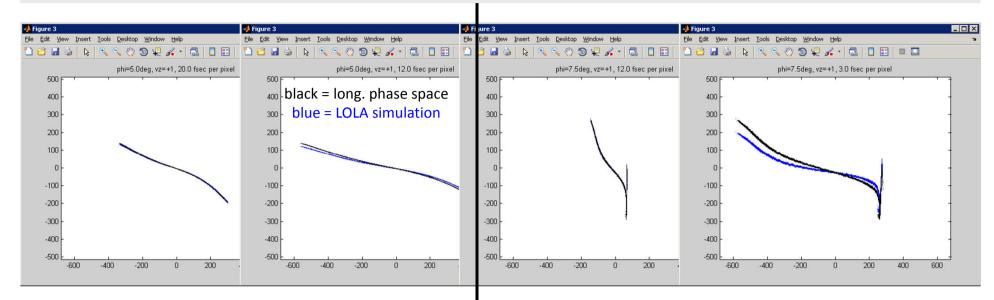


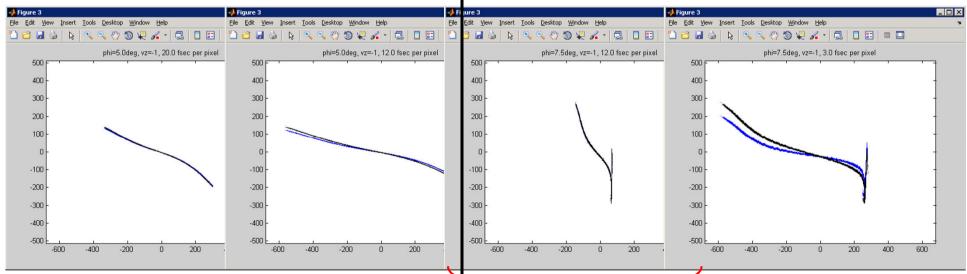
none of the errors, mentioned on the last transparency, is corrected by this method!



real LOLA measurement

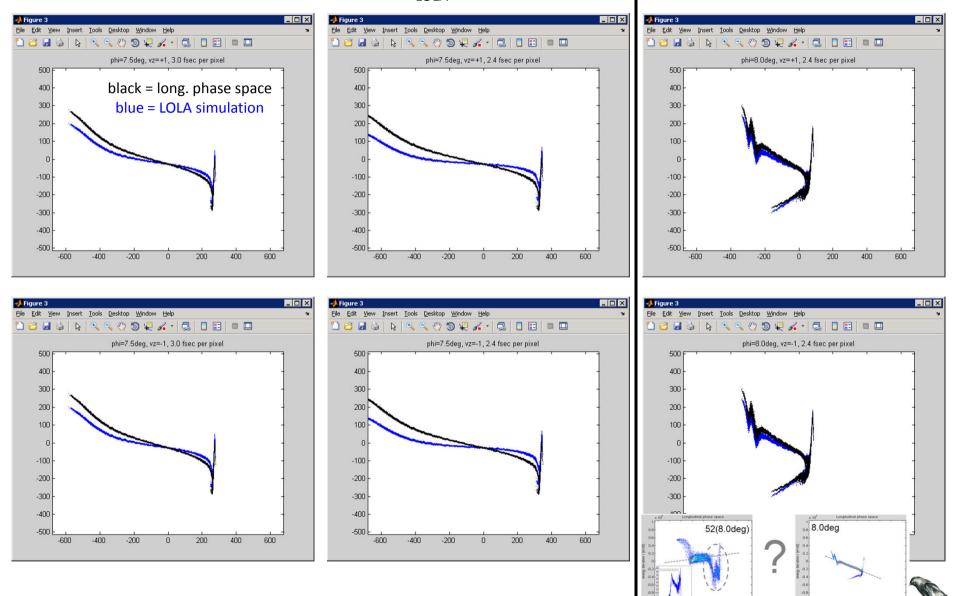
streak with both signs:


weak difference!
symmetric vertical phase space?

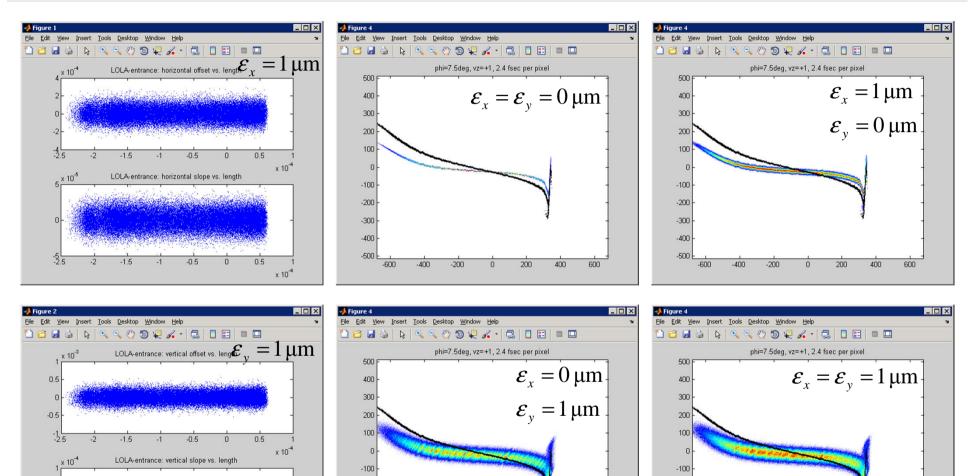


mess==40

simulated LOLA measurement: no transverse beam dimensions



all pictures: full OTR screen in pixels



simulated LOLA measurement: no transverse beam dimensions

(P_{LOLA}=25MW)

simulated LOLA measurement: gaussian transverse shape (design optics, emittance = 1um)

-200

-500

-600

⁻³⁰⁰ black = long. phase space

color = LOLA simulation

-400 -200 0

200

400

600

-200

-300

-400

-500

-600

-400

-200

0

200

0.5

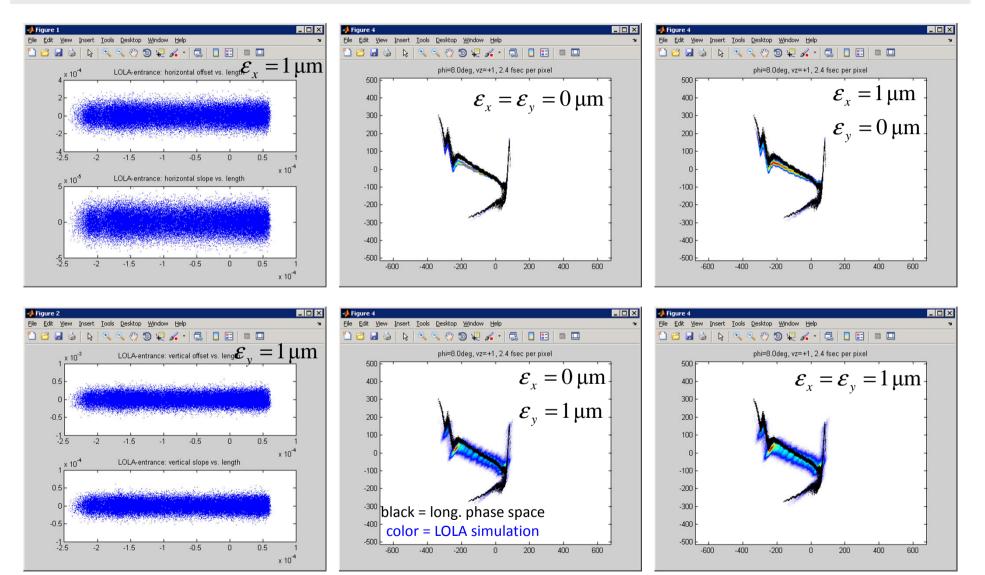
-0.5

-1-

-2 -1.5 -1 -0.5

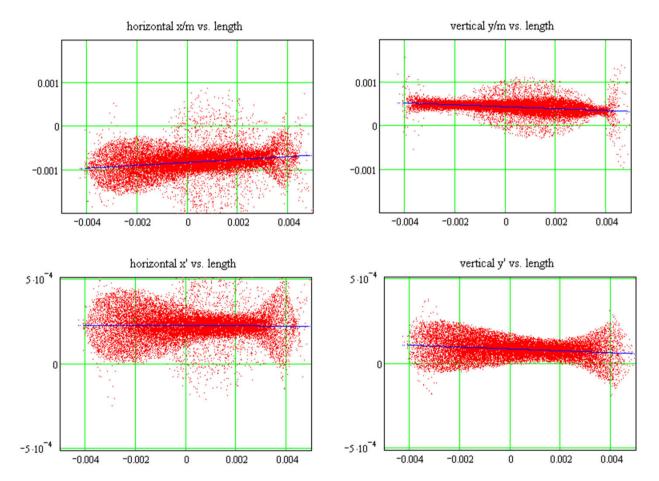
0

0.5


x 10⁻⁴

600

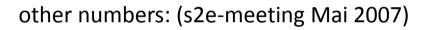
400


simulated LOLA measurement: gaussian transverse shape

so far no difference for vz=+-1

horizontal & vertical parameters vs. length at BC2 entrance (TW mode, ACC1 145 MV, 4.7 deg, ACC39 20MV, -144.7 deg)

coupler kicks with numbers as on the next page


numbers: Matrix = [(vx) (vy) (dvx/dx) (dvy/dx) (dvy/dy) (dvy/dy)] **TESLA Cavity** $= (-54.8 + 13.0i) \cdot 10^{-6}$ upstream (-22.4+14.1i)·10⁻⁶] downstream = (-26.8+19.0i) · 10⁻⁶ (41.1+ 6.0i)·10⁻⁶ Third harmonic cavity orientation 1 upstream= [-0.0001418+ 0.0002761i 0.006803-0.014275i 0.011683-0.027045i -0.0000599+ 0.0001751i 0.011683-0.027045i -0.006803+0.014275i] downstream= [-0.0003923- 0.0001021i 0.014767-0.024901i 0.011434+0.030693i 0.0000677+ 0.0002085i 0.011434+0.030693i -0.014767+0.024901i] 3rd harmonic cavity, orientation 2 upstream= -0.0003923+ 0.0001021i -0.014767-0.024901i 0.011434-0.030693i -0.0000677+ 0.0002085i 0.011434-0.030693i 0.014767+0.024901i] downstream= -0.0001418-0.0002761i -0.006803-0.014275i 0.011683+0.027045i 0.0000599+0.0001751i 0.011683+0.027045i 0.006803+0.014275i]

TESLA cavity in pure traveling wave operation (my old MAFIA calculation before 2005, Qe=2.5E6) 3rd harmonic cavity in pure SW operation (fields from E. Gjonaj)

numbers:

TESLA Cavity upstream = $(-54.8+13.0i) \cdot 10^{-6}$ $(-22.4+14.1i) \cdot 10^{-6}$ downstream = $(-26.8+19.0i) \cdot 10^{-6}$ $(41.1+6.0i) \cdot 10^{-6}$

upstream = $(-57.1+6.6i) \cdot 10^{-6}$ $(-41.4-3.5i) \cdot 10^{-6}$

z_pen = 6 mm, <mark>forward</mark>
downstream = (-25.0+51.5i)·10 ⁻⁶
(32.2+ 5.2i)·10 ⁻⁶
z_pen = 8 mm, forward
downstream = (0.5+53.7i)·10 ⁻⁶
(32.4+ 5.1i)·10 ⁻⁶

backward

HOM coupler

pick up

(−52.3− 8.1i)·10⁻⁶ (32.4+ 5.8i)·10⁻⁶ 115.4mm

(-39.2-33.6i)·10⁻⁶ (33.0+ 5.6i)·10⁻⁶

HOM coupler

a, b

power coupler

numbers:

TESLA Cavity upstream = $(-54.8+13.0i) \cdot 10^{-6}$ $(-22.4+14.1i) \cdot 10^{-6}$ downstream = $(-26.8+19.0i) \cdot 10^{-6}$ $(41.1+6.0i) \cdot 10^{-6}$

more other numbers:

 $\label{eq:constraint} $$ for $$ fon$

Table 2: RF kick on-axis due to coupler asymmetry in [kV]. Re(V) is the in-phase, Im(V) the out-of-phase kick.

Region	\mathbf{V}_x	\mathbf{V}_y
Upstream	-1.82 + 0.22i	-1.29 - 0.11i
Downstream	-0.79 - 1.62i	+1.15 + 0.28i
Total	-2.61 - 1.40i	$-0.13 \pm 0.17i$

05 Beam Dynamics and Electromagnetic Fields

upstream
(−57.8+ 7.0i)·10 ⁻⁶
(-25.1-51.4i)·10 ⁻⁶
downstream
(–41.0–3.5i)·10⁻ ⁶
(36.5+ 5.4i)·10 ⁻⁶

but the geometry is probably different

Proceedings of EPAC08, Genoa, Italy

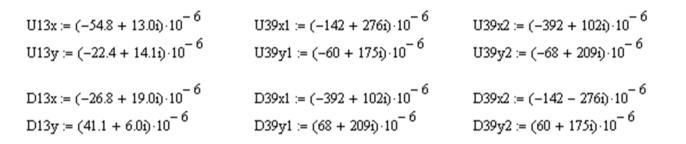
 $\mathbf{V}(x, y) = \int (\mathbf{E}(\mathbf{r}) + c\mathbf{e}_z \times \mathbf{B}(\mathbf{r})) \exp(i\alpha z/c) dz$ and comicoefficients $v_{x0}, v_{y0}, v_{xx}, v_{xy}, v_{yx}, v_{yy}$. The coefficients is up- and down-stream couplers (TDR TESLA adjusted to $\mathcal{Q}_{ext}=2.5\cdot10^6$ and operated without rems) have been calculated from a decaying eigenso-[http://adweb.desy.de/-mpymax/mafia/HOM_Couplex.html]. They are listed in Tab. 1.

Table 1: RF kick coefficients

	upstream	downstream
$v_{x0} \cdot 10^{6}$	-57+7i	-23+52i
$v_{xx} \cdot 10^6 / \text{mm}$	1.0-0.7i	-3.7-2i
$v_{xy} \cdot 10^6 / \text{mm}$	3.4+0.2i	3.0+0.4i
$v_{y0} \cdot 10^{6}$	-42-3i	30+5i
$v_{yx} \cdot 10^6 / \text{mm}$	3.4+0.2i	3.0+0.4i
$v_{yy} \cdot 10^6 / \text{mm}$	-1.1+0.6i	3.8+1.9i

upstream $(-57+ 7i)\cdot 10^{-6}$ $(-23+52i)\cdot 10^{-6}$ downstream $(-42- 3i)\cdot 10^{-6}$ $(30+ 5i)\cdot 10^{-6}$ 250-10⁶ mesh poi 408 processor cor curves obtained obtained by coars $-k_x \left[\frac{V}{nC}\right] \frac{12}{10} \frac{1}{10}$

Table I. The RF kick for upstream and downstream couplers.


		Direct integration	P-W theorem
Upstream HOM coupler	$10^6 V_{0x} / V_a$	-68.8+3.7i	-65.6+7.6i
	$10^6 V_{0y} / V_a$	-48.3-3.4i	-53.1-2.1i
Downstream HOM&main couplers	$10^6 V_{0x} / V_a$	-36.5+66.1i	-27.3+67.2i
	$10^6 V_{0y} / V_a$	41.0+14.5i	40.9+12.8i

The results are in agreement with calculations presented

upstream (-68.8+ 3.7i)· 10^{-6} (-48.3- 3.4i)· 10^{-6} downstream (-36.5+66.1i)· 10^{-6} (41.0+14.5i)· 10^{-6}

used for the following: (TW mode, ACC1 145 MV, 4.7 deg, ACC39 20MV, -144.7 deg)

time dependent part: same order of magnitude!

ACC13
8.V ACC13.(U13x + D13x) =
$$-9.738 \times 10^{4} + 2.924i \times 10^{4}$$

8.V_ACC13.(U13y + D13y) = $2.244 \times 10^{4} + 2.412i \times 10^{4}$
 $|8.V_ACC13.(U13x + D13x)| = 1.017 \times 10^{5}$
+ $|8.V_ACC13.(U13y + D13y)| = 3.185 \times 10^{4}$

ACC39
$$2 \cdot V_{ACC39} \cdot (U39x1 + U39x2 + D39x1 + D39x2) = 3.958 \times 10^{4} + 1.803i \times 10^{4}$$

 $2 \cdot V_{ACC39} \cdot (U39y1 + U39y2 + D39y1 + D39y2) = 1.775 \times 10^{4} - 2.507i \times 10^{4}$
 $|2 \cdot V_{ACC39} \cdot (U39x1 + U39x2 + D39x1 + D39x2)| = 4.349 \times 10^{4}$
 $|2 \cdot V_{ACC39} \cdot (U39y1 + U39y2 + D39y1 + D39y2)| = 3.072 \times 10^{4}$

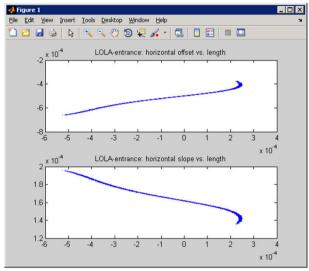
simulated LOLA measurement: no emittance but coupler kick

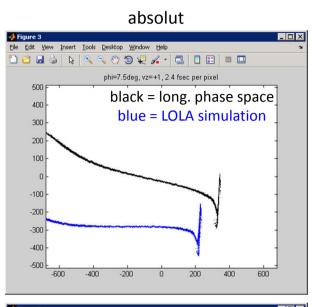
design optics

with self effects: perturbation approach

only CK before BC2 is considered here

it depends on cavity phases & amplitudes and on TW/SW modus


for short bunches CK of cavities after BC2 negligible, but probably not for on-crest measurement (needed to determine the uncompressed bunch length)



simulated LOLA measurement: no emittance but coupler kick

phi = 7.5 deg

transverse due to CK

only time dependent part of CK

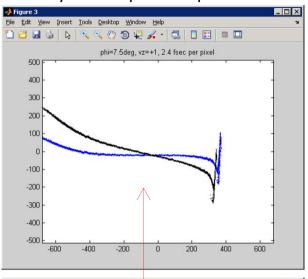
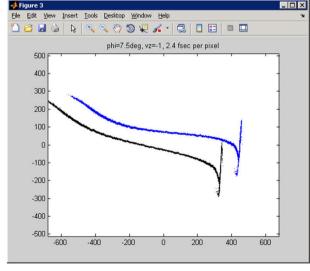


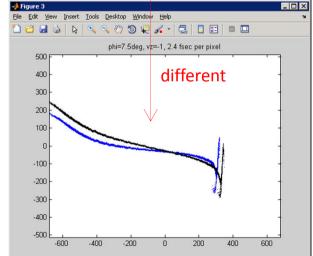
Figure 2 _ 🗆 🗙 File Edit View Insert Tools Desktop Window Help 11 🖆 🛃 🌭 🔍 🤍 🖑 🕲 🖳 🖌 • 🗔 🔲 📰 💷 LOLA-entrance: vertical offset vs. length x 10⁻³ -0.8 -1.2 -1.4 L -2 -3 -1 Π 2 3 x 10⁻⁴ LOLA-entrance: vertical slope vs. length x 10⁻⁴

1 2 3 4

x 10⁻⁴

-1.2


-1.4

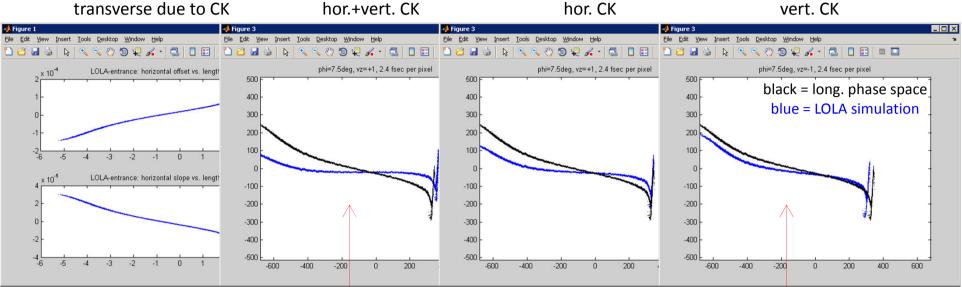

-1.6

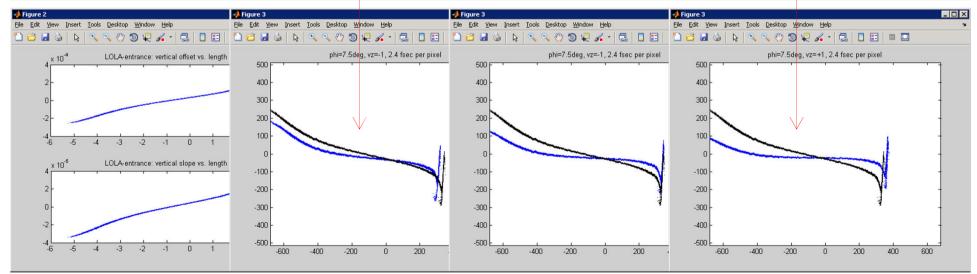
-1.8

-4 -3 -2 -1 0

-5

simulated LOLA measurement, no emittance but coupler kick


phi = 7.5 deg

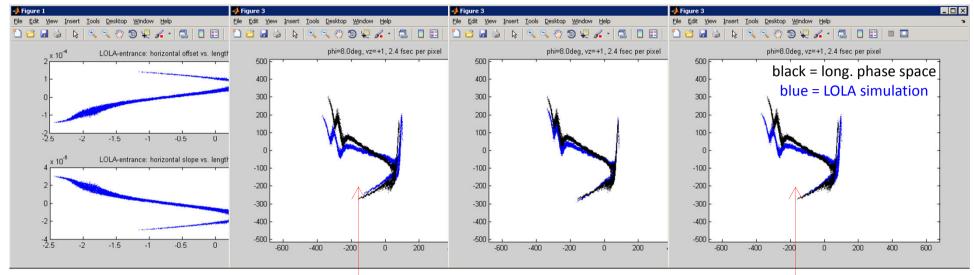

only time dependent part of CK

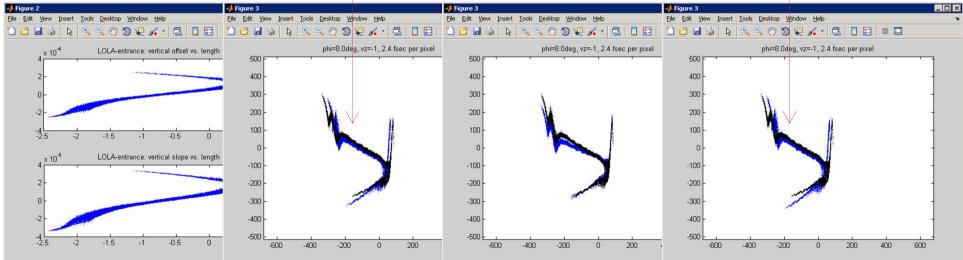
hor. CK

hor.+vert. CK

transverse due to CK

simulated LOLA measurement, no emittance but coupler kick

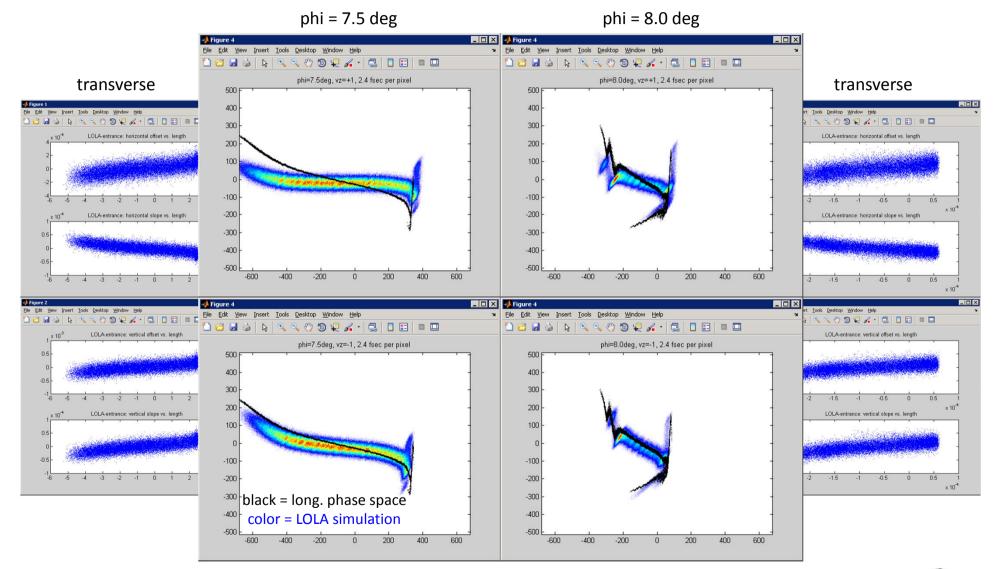

phi = 8.0 deg


only time dependent part of CK

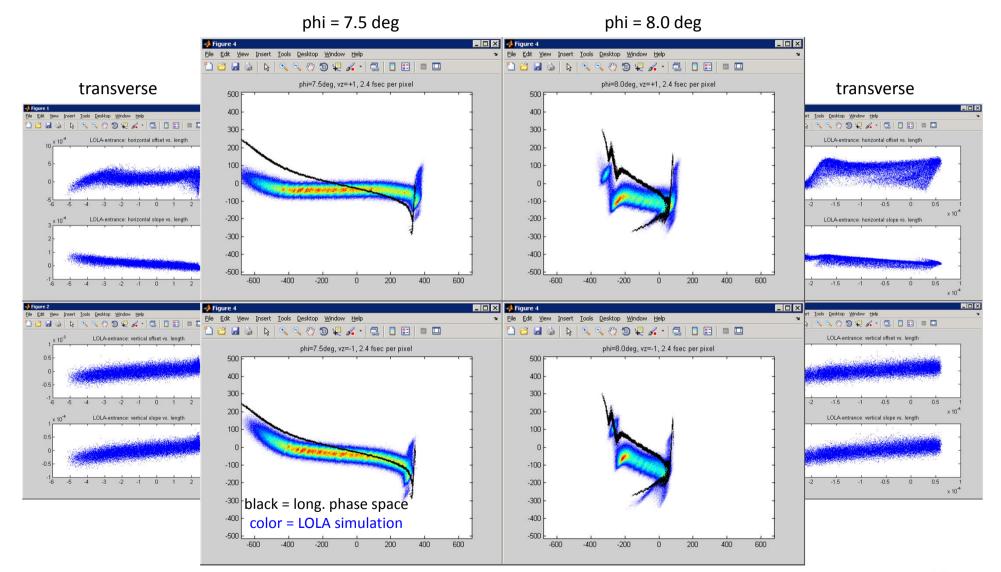
transverse due to CK

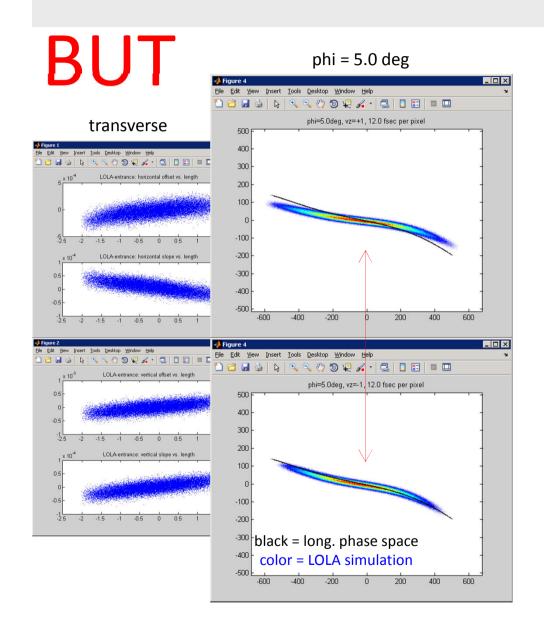
hor.+vert. CK hor. CK

vert. CK



simulated LOLA measurement, gaussian transverse + CK


starts from design optics (emittance=1um)

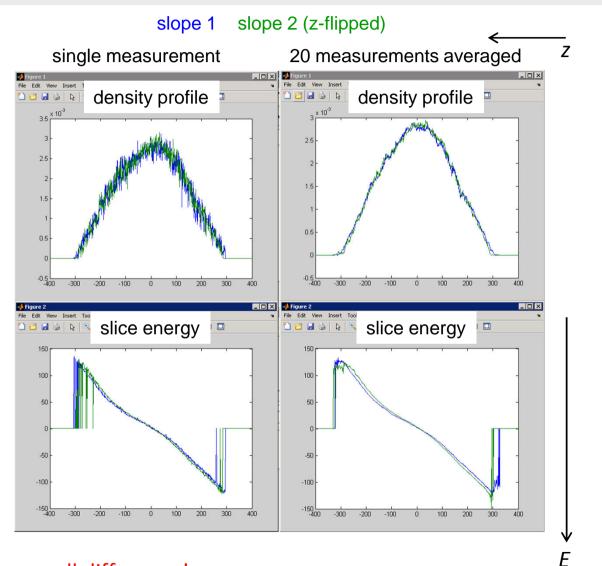

simulated LOLA measurement, CSR-transverse + CK

horizontal CSR; starts from design optics (emittance=1um)

simulated LOLA measurement, CSR-transverse + CK

long bunch, low compression

this difference has not been observed

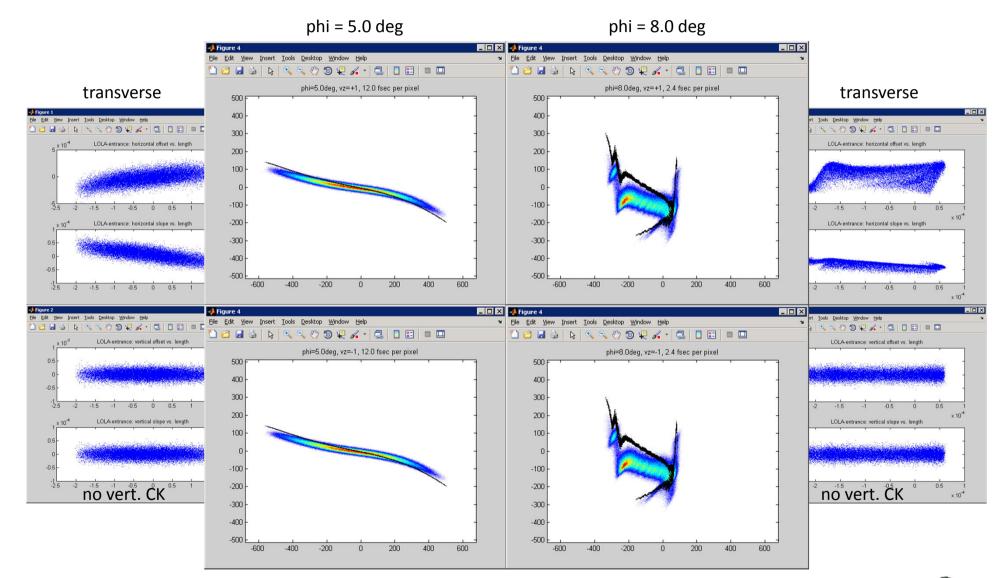


real LOLA measurement phi = 5.0 deg

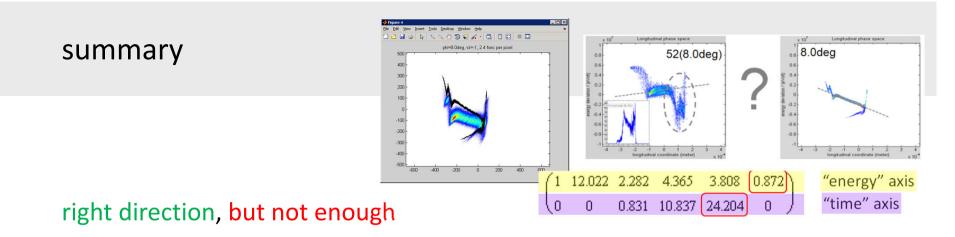
index = 1010 40 50 60 log-book: 16.06.2011 19:55 tp2c99b905 d98f 4011 926a 1308318b535d.ps ttflinac Longitudinal phase space Projected energy deviation msenergyspread: 1.1 +−0.0 x 10⁻¹ $\Lambda F/F$ 5000 - 100 100 200 300 longitudinal coordinate (ts) charge per energy deviation (nC/10⁻³ Longitudinal bunch profile Slice energy spread rms bunch length: 2667 +-221 fs E 7/0 -5000 0 5000 -5000 0 5000

longitudinal coordinate (fs)

longitudinal coordinate (fs)



small difference!
???: vertical distribution nearly symmetric


simulated LOLA measurement, CSR-transverse + horizontal CK

horizontal CSR; starts from design optics (emittance=1um)

same picture for both streaks, no error in time measurement

"energy" measurement:

significant crosstalk from "time" meas. for strong streak crosstalk from hor. & vert. phase-space vert. phase space: sign flips with streak

"time" measurement:

only crosstalk from vertical phase space

CK still unknown; horizontal part depends on cavity operation

CK affects LOLA measurement horizontal \rightarrow "energy" measurement vertical \rightarrow "energy" and "time"

vertical CK perhaps overestimated

