DESY/TEMF Meeting – Status 2012

TECHNISCHE UNIVERSITÄT DARMSTADT

PIC Simulation for the Electron Source of PITZ DESY, Hamburg, 17.12.2012

Ye Chen, Erion Gjonaj, Wolfgang Müller, Thomas Weiland

Technische Universität Darmstadt, Computational Electromagetics Laboratory (TEMF) Schlossgartenstr. 8 64289 Darmstadt, Germany

Contents

- Motivation for this study
- Main procedures in CST
- Grid resolution demands

3D CST Simulation

- Field Simulation
 - Gun-Cavity simulation
 - Solenoids simulation
- PIC Simulation
 - Setup
 - Astra particle import
 - Preliminary results
- Discussions
 - Interpolation in PEC

Summary & Further Steps

Motivation & Introduction

Motivation & Introduction

Main procedures in CST

- Simulations for gun-cavity & solenoids (CST-MWS & EMS)
- Tune & Calibrate external fields referring to ASTRA import data
- PIC simulations at a short distance of (60~130) mm (CST-PS)
- Beam qualities comparison between PIC simulations and ASTRA
- Continue PIC simulations with finer grid resolutions (Δx,Δy,Δz«0.05mm)
- Broaden the calculation domain as far as possible
- Check the results using different particle distributions
- Investigations with inhomogeneous particle distributions
- Investigate the influence of cathode (material, impurities ...)
- Optimizations & Repeat simulations with refined parameters

Motivation & Introduction

- Grid resolution demands for PIC simulations

- Part of the calculation domain
- $\Delta x_1 \& \Delta y_1 \& \Delta z \ll 0.05 \text{ mm}$
- d = $2X_{rms}$
- Δx₂ & Δy₂≈ (2~3)×0.05mm
- By properly choosing $\Delta x_2 \& \Delta y_2$ outside the bunch region, there will be mesh-saving solutions to broaden the calculation domain in PIC simulations as far as possible.

3D CST Simulation-Field Simulation

TECHNISCHE UNIVERSITÄT DARMSTADT

- Setup 1 for Gun-Cavity Simulation (CST-MWS)

Local mesh properties

- A cylinder, not included in the simulation, only for mesh refinement at the cathode.
- $L_z = \Delta z$ (mesh resolution in z, 0.01mm-0.05mm).
- $\Delta x \& \Delta y$ should be comparable with Δz (0.01mm-0.05mm).

To obtain the field ratio we need, the radius of half cell was tuned by \sim 70 μ m

TECHNISCHE UNIVERSITÄT DARMSTADT

- Gun-Cavity Simulation Results

Doromotoro	Values	CST	¥/m
Parameters	values		2.16e+07
			1.77e+07
			1.38e+07 -
Δοομιταογ	10-6		9.84e+06
Accuracy	16-0		5.9e+06
			0- ē
		Mode 1 E (peak)	E 00.106
Lines/wavelength	120	Type: E-Field + + + +	-9.84e+06
		Cutplane position: 0	-1.38e+07
		2D Maximum: 2.048e+07 Frequency: 1.302	-1.77e+07
		Phase: 0 E-field	-2.16e+07 +
Mesh resolution	0.125mm	CST	A/m
			2.37e+04 +
			1.94e+04
Duration	60h		1.51e+04
Duration	6011		1.08e+04
			6.47e+03 -
Frequency separation	3 6MHz		1 → 0
rrequeries separation	0.011112	Mode 1 H (peak)	-6.47e+03
		Type: H-Field	-1.08e+04
		Cutplane normal: 0, -0.02223, 0.9998 Cutplane position: 91.11	-1.51e+04
Frequency	~1.301GHz	2D Maximum: 2.243e+04	-1.94e+04
		Phase: 315	-2.37e+04

- Setup 2 for Solenoids Simulation (CST-EMS)

from 6mm to 132mm so far

- Setup 3 for PIC Simulation (CST-PS)

- ASTRA Particle Import

- Preliminary results

Animation of the transverse particle distributions

Discussions

- Interpolation in PEC

Cause

Difference of the grid resolution around the cathode between field simulation & PIC simulation

Outcome

 E_{τ} at the cathode was changed by automatic interpolation.

Solutions

-Keep the grid settings exactly the same around the cathode. But the field simulations turn to be much slower because of the very small grid.

-Make the interpolation take place inside the cathode by shifting the back plane. it will somehow change But the eigenmode a little bit.

Summary & Further Steps

- Summary

- PIC Simulation results at a short distance of 60mm downstream from the cathode showed possibilities of convergence to ASTRA simulation in terms of the beam radius by use of a finer mesh resolution (Q=1nC, grid resolution Δz≈0.07mm so far). But the current resolution is still not enough.
- Still no good agreement with ASTRA on the beam emittance at a short distance of 60mm by improving the grid resolution.
- Eigenmode convergence when setting local resolution as (Δx,Δy,Δz)<0.05mm is relatively very slow.

- Steps in the near future

- Continue PIC simulations by enhancing the grid resolutions.
- Broaden the calculation domain as far as possible (60mm~200mm, Δx, Δy, Δz « 0.05mm).
- Check the simulations with different particle distributions(r=0.3mm).
- Investigate the cases with inhomogeneous particle distributions at the cathode.

Thank you for your attention!

