

High Charge Beam Dynamics Simulations for THz Radiation

Igor Zagorodnov 21.11.2011 DESY

THz pump/X-ray-probe experiment

Fig. 26. Double electron bunch generation for THz pump/X-ray probe experiments at the LCLS. The THz radiation transport through the access maze introduces a path delay with respect to the X-ray path, which has to be compensated with the introduction of a delay between two bunches.

Scheme for generating and transporting THz radiation to the X-ray experimental floor at the LCLS baseline

Gianluca Geloni, European XFEL GmbH, Hamburg

Vitali Kocharyan and Evgeni Saldin Deutsches Elektronen-Synchrotron DESY, Hamburg

Beam dynamics simulations for the European XFEL

Full 3D simulation method (200 CPU, ~ 5 hours)

ASTRA (tracking with 3D space charge, DESY, K. Flötmann)

• CSRtrack (tracking through dipoles, DESY, M. Dohlus, T. Limberg)

- W1 -TESLA cryomodule wake (TESLA Report 2003-19, DESY, 2003)
- **W3** ACC39 wake (TESLA Report 2004-01, DESY, 2004)
- TM transverse matching to the design optics

Beam dynamics simulations for the European XFEL Working point (11 macro-parameters)

Chicane	Minimum R56 [mm]	Maximum R56 [mm]
BC0	0, 30	90
BC1	20	80
BC2	10	60

Table 1: R56 requirements for XFEL magnet compressor chicanes

Macroparameters for Q=0.25nC

Momentum	Compr.	Momentum	Compr.	Momentum	Total	First	Second	Current,
compaction	in BC ₁	compaction	in BC ₂	compaction	compr.	inverse	inverse	Ι
factor in	C ₁	factor in	C ₂	factor in	С	derivative	derivative	[kA]
BC_1		BC_2		BC_3		Ζ',	Ζ",	
$K_{56,1},$		$K_{56,2},$		$K_{56,3},$		[m ⁻¹]	[m ⁻²]	
-78	3.5	-43	8	-20	385	0	1000	5

RF settings in accelerating modules for all charges

V _{1,1} ,	φ _{1,1} ,	V _{1,3} ,	φ _{1,3} ,	V ₂ ,	φ ₂ ,	V ₃ ,	φ ₃ ,
[MV]	[deg]	[MV]	[deg]	[MV]	[deg]	[MV]	[deg]
157	17.6	26	186	689	33.7	1727	8.4

RF gun settings

Charge,	Laser spot size
[nC]	XY _{rms} ,
	[mm]
0.25	0.23
0.5	0.29
1	0.4
2	0.65
3	0.9

Other gun settings are the same for all charges (optimal for 0.25pC).

Q=0.25 nC

Q=0.5 nC

Phase space *E*[GeV] Current, emittance, energy spread 4 I[kA]14.005 3 14 2 152 fs $\varepsilon_{v}[\mu m]$ 13.995 ε_x [µm 1 $\sigma_{E}[MeV]$ 13.99 0⊑ -40 -20 20 40 0 60 ⁴⁰ *s* [μm] -20 20 0 *s* [µm] $\varepsilon_{x}^{proj} = 0.6 \, [\mu m]$ bunch head $\varepsilon_v^{proj} = 1.8 \, [\mu m]$

Q=1 nC

Q=2 nC

Q=3 nC

Beam parameters from S2E simulations

Parameter	Unit					
Bunch charge	nC	3	2	1	0.5	0.25
Peak current (gun)	А	128	84	43	24	13.5
Bunch length (gun, FWHM)	ps	24	24	25	22	20
Slice emittance (gun)	μm	1.5	1.1	0.8	0.5	0.3
Projected emittance (gun)	μm	3.3	2.2	1	0.7	0.6
Compression		18	29	65	125	363
Current (in center)	kA	2.3	2.4	2.8	3	5
Bunch length (FWHM)	fs	910	752	363	152	39
Slice emittance	μm	2.5	1.5	1	0.6	0.5
Projected emittance	μm	10	5.4	2.8	1.8	1.5
Slice energy spread	MeV	0.2	0.2	0.3	0.3	0.6
(laser heater off)						

Choosing of machine parameters

Macro-parameters

 $E_1 = 130 \,\mathrm{MeV}$ $E_2 = 700 \,\mathrm{MeV}$ $E_3 = 2400 \,\mathrm{MeV}$

Charge	Momentum	Compr.	Momentum	Compr.	Momentum	Total	First	Second
Q,	compaction	in BC ₁	compaction	in BC ₂	compaction	compr.	derivative	derivative
nC	factor in BC_1	C ₁	factor in BC_2	C ₂	factor in BC_3	С	Ζ',	Ζ",
	R _{56,1} ,		R _{56,2} ,		R _{56,3} ,		[m ⁻¹]	[m ⁻²]
	[mm]		[mm]		[mm]			
0.25	-78	3.5	-43	8	-20	385	0	1000
1	-100	3.5	-54	8	-20	121	0	2000
1	-86	3.5	-54	8	-20	242	0	1500
2	-86	3	-49	3	-50	121	0	500
3						121		

Chicane	Minimum R56 [mm]	Maximum R56 [mm]
BC0	0, 30	90
BC1	20	80
BC2	10	60

Table 1: R56 requirements for XFEL magnet compressor chicanes

Beam parameters from S2E simulations

Parameter	Unit			
Bunch charge	nC	1	_	
Peak current (gun)	А	43		
Bunch length (gun, FWHM)	ps	25		
Slice emittance (gun)	μm	0.8		
Projected emittance (gun)	μm	1		
Compression		116	228	
Current (in center)	kA	5	9.8	
Bunch length (FWHM)	fs	178	75	
Slice emittance	μm	1	1	
Projected emittance	μm	3.5	8	
Slice energy spread	MeV	0.45	1	
(laser heater off)				

Q=1 nC, I=5 kA

Q=1 nC, I=10kA

Phase space

60

Q=2 nC

