

Study of ACC1 voltage amplitude changing impact on SASE at FLASH

Guangyao Feng and Torsten Limberg 03.12.2012 MPY, DESY

Contents

Introduction

- Choice of the RF parameters values of the accelerating modules for two cases
- Estimation of Bmag at the end of ACC1 between the two cases.
- Start to end simulation of FLASH
- ➤ Summary

In February this year, a phenomenon was found during the SASE FEL experiment: When the voltage amplitude of ACC1 is adjusted from about 161MV to 166MV, SASE FEL can't be tuned only by adjusting the RF parameters of the accelerating modules.

Choice of the RF parameters values of the accelerating modules

10.02.2012 22:47 ttflinac

7

Q=0.22nC I_{BC2}=72.7A, I_{BC3}=56.09A

Restrictions

- (1) In case1, RF parameters values should be closed to the setting points in the logbook.
- (2) In case2, the voltage amplitude of ACC1 is about 166.6MV.
- (3) In both of the two cases,

E=146MeV after ACC39 E=450MeV after ACC3

Case1

$$V_1 = 161.42 \text{MV}$$

 $\phi_1 = 5.43^\circ$
 $V_{39} = 19.49 \text{MV}$
 $\phi_3 = 170.1^\circ$

$$\begin{pmatrix} \varphi_1 \\ V_{39} \\ \varphi_3 \end{pmatrix} = M \begin{pmatrix} V(0) \\ V'(0) \\ V''(0) \end{pmatrix}$$

 $V(0) = V_1 \text{Cos}(\varphi_1) + V_{39} \text{Cos}(\varphi_3)$

Case1

Case2 (V₁=166.6MV)

Difference between Case1 and Case2

	Case1	Case2
V ′′′′(0) [MV/m ³]	2.13665×10 ⁶	-2.48147×10 ⁶

Impact of V'''(0) on the current profile

If the parameter V''(0) is large enough, we will have a stronger compression at the middle of the bunch and a weaker compression in the head and the tail.

* Igor Zagorodnov, Martin Dohlus, Semianalytical modeling of multistage bunch compression with collective effects, PHYSICAL REVIEW SPECIAL TOPICS
- ACCELERATORS AND BEAMS 14, 014403 (2011)

Estimation of the Bmag at the end of ACC1 between the two cases

SASE FEL

• One dimensional model

$$P_{beam}[TW] = E_0[GeV]I[kA]$$

$$\sigma_x = \sqrt{\beta \varepsilon_n/\gamma_0}$$
Beta function
Pierce parameter
$$\rho = \left[\left(\frac{I}{I_A} \right) \left(\frac{\lambda_w A_w}{2\pi \sigma_x} \right)^2 \left(\frac{1}{2\gamma_0} \right)^3 \right]^{1/3}$$
Beam emittance
$$P_n \approx \rho^2 c E_0 / \lambda$$

$$L_g = \lambda_w / 4\pi \sqrt{3}\rho$$

$$P_{sat} \approx \rho P_{beam}, \quad L_{sat} = L_g Ln \left(\frac{P_{sat}}{aP_n} \right)$$

• Formula obtained empirically by fitting simulation results

$$P_{sat} \approx 1.6 \rho \left(\frac{L_{1d}}{L_g}\right)^2 P_{beam}$$

Universal scaling function $\frac{L_{1d}}{L_{q}}$

$$\frac{L_{1d}}{L_g} = F(\eta_d, \eta_\varepsilon, \eta_\gamma)$$

 $\eta_{d} = \frac{L_{1d}}{4\pi\sigma_{\chi}^{2}/\lambda} \, _{\omega} \eta_{\varepsilon} = \left(\frac{L_{1d}}{\beta}\right) \left(\frac{4\pi\varepsilon}{\lambda}\right), \, \eta_{\gamma} = 4\pi \left(\frac{L_{1d}}{\lambda_{w}}\right) \left(\frac{\sigma_{e}}{E_{0}}\right)$

Energy spread

Where

Transfer matrix of the standing wave cavity*

$$M_{\text{cavity}} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$
$$= \begin{pmatrix} \cos(\alpha) - \sqrt{2} \cos(\Delta \emptyset) \sin(\alpha) & \sqrt{8} \frac{\gamma_i}{\gamma'} \cos(\Delta \emptyset) \sin(\alpha) \\ -\frac{\gamma'}{\gamma_f} \left[\frac{\cos(\Delta \emptyset)}{\sqrt{2}} + \frac{1}{\sqrt{8} \cos(\Delta \emptyset)} \right] \sin(\alpha) & \frac{\gamma_i}{\gamma_f} \left[\cos(\alpha) + \sqrt{2} \cos(\Delta \emptyset) \sin(\alpha) \right] \end{pmatrix}$$

$$\alpha = \frac{\operatorname{Ln}\left(\frac{\gamma_f}{\gamma_i}\right)}{\sqrt{8}\operatorname{Cos}(\Delta \emptyset)}$$

$$\gamma' = (\gamma_f - \gamma_i)/L_{Cavity}$$

$$\Delta \emptyset: \text{ Accelerating phase shift of the cavity}$$

... ...

* J. Rosenzweig, Transverse particle motion in radio-frequency linear accelerators, PHYSICAL REVIEW E, VOLUME 49, NUMBER 2, 1994

First Cavity of ACC1

	L _{Cavity} [m]	ΔØ [°]	γ_i	γ_f	γ′ [1/m]	α	m ₂₁ [1/m]
Case1	1.3757	5.43	9.80626	49.1154	28.5739	0.572196	-0.333628
Case2	1.3757	15.26	9.80626	49.1228	28.5793	0.590501	-0.339688

m₂₁ for each cavity of ACC1

m ₂₁ for ACC1's cavity	#1	#2	#3	#4	#5	#6	#7	#8
Case1	-0.33363	-0.07095	-0.03086	-0.01724	-0.01100	-0.00762	-0.00560	-0.00428
Case2	-0.33969	-0.07246	-0.03152	-0.01761	-0.01124	-0.00779	-0.00572	-0.00437
Stronger focusing in the first cavity								

Thin lens approximation of the first cavity

A thin lens model of the first cavity of ACC1

$$M_{cavity} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -Kl & 1 \end{pmatrix}$$

$$K_1 l = 0.333628 \ 1/m$$

 $K_2 l = 0.339688 \, 1/m$

$$B_{mag} = \frac{1}{2} \left[\frac{\beta_2}{\beta_1} + \frac{\beta_1}{\beta_2} + \left(\alpha_2 \sqrt{\frac{\beta_1}{\beta_2}} - \alpha_1 \sqrt{\frac{\beta_2}{\beta_1}} \right)^2 \right]$$
$$= \frac{1}{2} [2 + \alpha_1^2 + \alpha_2^2 - 2\alpha_1 \alpha_2]$$

 $\beta_0 \approx 1.0m$ in the first cavity of ACC1

$$B_{mag\approx} \frac{1}{2} \left[2 + \left(\frac{\gamma_f}{\gamma_i}\right)^2 (\Delta K)^2 l^2 \beta_0^2 \right] \approx 1.00046$$

Bmag calculation by using transfer matrix for ACC1 section

- Initial twiss parameters before ACC1 and the information of the drift space and the cavities come from Elegant lattice file*.
- Transfer matrix of standing wave cavity is used to simulate each cavity of ACC1.

Twiss parameters before ACC1

 $\beta_0 = 0.7148m$ $\alpha_0 = -1.3166$

	V ₁ (MV)	$\Delta \phi_1$ (°)	$\beta_1(m)$	α1	B _{mag}
Case1	161.42	5.43	15.7619	-0.7297	1.00172
Case2	166.6	15.26	15.1848	-0.7475	halful Twiss parameters $a_{0}, \beta_{0}, \gamma_{1}$ $b_{1} = b_{1} = b$
					$\mathbb{E}_{i} = (\mathcal{E}_{aud} - \mathcal{E}_{au})n/\hbar + \mathcal{E}_{au}$ $\mathcal{E}_{j} = (\mathcal{E}_{aud} - \mathcal{E}_{au})n/\hbar + \mathcal{E}_{i}$ $\mathcal{E}_{j} = (\mathcal{E}_{aud} - \mathcal{E}_{au})n/\hbar + \mathcal{E}_{i}$ $\mathcal{M}_{excerp}(p, p_{2}, 2\hbar, \delta_{excerp}) = (\frac{m_{1}}{m_{12}}, \frac{m_{12}}{m_{22}})$ $\mathcal{E}_{j} = \beta_{1} \left(a_{0}, \beta_{0}, p_{12}^{T}\right), a_{1} = a_{1} \left(a_{0}, \beta_{0}, p_{12}^{T}\right)$ $a_{0} = a_{0}, \beta_{0} = \beta_{j}, y_{0} = (1 + a_{0}^{T})/\beta_{0}$
					Drift Space between the adjacent two excites $a_0 = a_1, \beta_0 = 2a_0 l + \gamma_0 l^2, a_1 = a_0 - \gamma_0 l$ $a_0 = a_1, \beta_0 = \beta_1, \gamma_0 = (1 + a_0^2)/\beta_0$

* ELEGANT lattice file for FLASH, FLASH_2012_1200MeV.lte

Codes used during the simulation

RF Gun	ASTRA
ACC1	ASTRA
ACC39	ASTRA
BC2	CSR-TRACK
ACC2/3	ASTRA
BC3	CSR-TRACK
ACC4/5/6/7	ASTRA
Dogleg section	CSR-TRACK
Straight section before undulator	ASTRA
Radiation Calculation	GENESIS
Design optics calculation	ELEGANT
Beam optics matching	MAD8

ASTRA (tracking with space charge)

• **CSRtrack** (tracking with CSR, 1D projected field calculation method)

GENESIS (Radiation calculation)

W1 -TESLA cryomodule wake W3 - ACC39 wake • Initial parameters values of beam bunch (300000 particles)

Charge	σ_t (Gaussian distribution)	σ _x (Radial uniform)	σ _y (Radial uniform)
0.22nC	4.4ps	0.286mm	0.286mm

• Curvature radius of the reference trajectory in the compressors*

$$r_{BC2} = 1.6272 \frac{E_{BC2}}{151} \times \frac{73.2}{I_{BC2}}$$
$$r_{BC3} = 6.5185 \frac{E_{BC3}}{470} \times \frac{56.4}{I_{BC3}}$$

* Estimation formula from Martin Dohlus

• RF parameters' values during the simulation

Case1

Case2

Element	Phase shift	V _{max}	Element	Phase shift	V _{max}
RF Gun	2.00°		RF Gun	2°	
ACC1	5.43°	161.42MV	ACC1	15.26°	166.6MV
ACC39	170.1°	19.49MV	ACC39	197.79°	20.188MV
ACC2/3	18.40°	321.011MV	ACC2/3	18.50°	321.198MV
ACC4/5	0°	225.6MV	ACC4/5	0°	225.6MV
ACC6/7	0.0°	0.0MV	ACC6/7	0.0°	0.0MV

• Beam energy

End of the element	Beam Energy			
	Case1	Case2		
ACC1	165.23MeV	165.20MeV		
ACC39	146.0MeV	146.0MeV		
ACC2/3	450.0MeV	450.0MeV		
ACC4/5/6/7	674.8MeV	674.5MeV		

• Field strength of the quadrupole magnets*

- ✓ As a normal operation mode, in case1, the beam optics is matched to the design optics before BC2 by adjusting Q_{9ACC1} , Q_{10ACC1} , $Q_{1.1UBC2}$ and $Q_{1.2UBC2}$.
- ✓ In case2, the same field gradient $(k = \frac{\partial B_y}{\partial x})$ of the quadrupoles as in Case1 should be used.
- * ELEGANT lattice file for FLASH, FLASH_2012_1200MeV.lte, med_med_FEL.sdds

Beam current profile along the beam line

Case 2

Case 2

Analyzing the two cases' beam optics mismatching to the design optics

Design optics

• At the entrance of BC2

Design Optics		Case1		Bmag
$\beta_{x}[m]$	$\alpha_{\rm x}$	$\beta_{x}[m]$	α	
22.3665	4.285583	22.40	4.26	1.00051
$\beta_{\rm y}[{\rm m}]$	α_{v}	$\beta_{\rm v}[{\rm m}]$	$\alpha_{\rm v}$	
21.0487	-0.84354	21.0	-0.834	1.00003

Design Optics		Case2		Bmag
$\beta_{x}[m]$	α _x	$\beta_{x}[m]$	α _x	
22.3665	4.285583	21.6	4.11	1.00103
$\beta_{\rm y}[{\rm m}]$	$\alpha_{\rm v}$	$\beta_{\rm v}[{\rm m}]$	$\alpha_{\rm v}$	
21.0487	-0.84354	20.1	-0.776	1.00152

• From the end of BC2 to the entrance of BC3

• From the end of BC3 to the entrance of dogleg

• From the end of dogleg to the entrance of undulator

Slice analysis of the beam bunch

 $\varepsilon_x{}^{proj}=4.13\mu m$, $\varepsilon_y{}^{proj}=1.14\mu m$

 $\varepsilon_x{}^{proj}=4.18\mu m$, $\varepsilon_y{}^{proj}=1.14\mu m$

 $\varepsilon_{x}{}^{proj}$ =6.20 μm , $\varepsilon_{y}{}^{proj}$ =1.29 μm

SASE FEL simulations

Summary

1. In order to investigate the ACC1 voltage amplitude changing impact on SASE at FLASH, two cases have been studied.

* In case1, RF parameters values of the accelerating modules are closed to the setting points of the logbook.

* In case2, in order to get the same beam energy (146MeV) after ACC39, the same compression ratio in BC2 and almost the same symmetry of the current profile as in case1, RF parameters have been obtained after theoretical calculation.

2. After optimizing the RF parameters of the accelerating modules, one should be able to achieve SASE even if the voltage amplitude of ACC1 is adjusted from about 161MV to 166MV and there is no quadrupole field strength adjustment.

Acknowledgements to Igor Zagorodnov, Martin Dohlus, Winni Decking for their kind help and helpful discussions

Thank you for your attention!