

- Themenbereiche:
 - 1. Strahldynamiksimulationen für die XFEL
 - 2. Wakefeldberechnungen für PETRA III
 - 3. Wakefelder kurzer Bunche in der Undulatorkammer

- Themenbereiche:
 - 1. Strahldynamiksimulationen für die XFEL
 - Problemstellung
 - Methodik
 - Simulationen
 - Diskussion
 - 1. Wakefeldberechnungen für PETRA III
 - 2. Wakefelder kurzer Bunche in der Undulatorkammer

Strahldynamiksimulationen

- Problemstellung
 - 1. Grundparameter:

Bunch:

Q = 1nC

 $\sigma_r = 0.75 \text{ mm} \text{ (uniform)}$

 $\sigma_t \sim 30 \text{ ps} \text{ (flat-top)}$

Felder:

Kavität (E_{max} = 60 MV/m, ϕ =-44.724°) Solenoid (B_{max} = 0.1988 T) Kathodenemission + Raumladung

2. Ziele:

- Validierung PIC-ASTRA im rotationssymmetrischen Fall
- Strahldynamik in der Kanone bei transversalen Intensitätsmodulationen

Methodik

- 1. Tracking-Tests ohne Raumladung
- 2. Konvergenzuntersuchung / Ermittlung numerischer Parameter mit Raumladung
- 3. Vergleich mit ASTRA im rotationssymmetrischen Fall
- 4. Nichtsymmetrischer Bunch mit 1/3 2/3 Q
- 5. Nichtsymmetrischer Bunch mit 2/5 3/5 Q

Transversale Bunchausdehnung

ASTRA: z = 0.4998 m

PIC-Code: z = 0.5 m

ASTRA: z = 0.4998 m

Simulationsschema mit Raumladung

Simulationsschema mit Raumladung

Simulationsschema mit Raumladung

Feld auf der Achse

4,5 ASTRA PIC - $\Delta x = \Delta z = 200 \ \mu m$, Np = 20.000 4 ϵ_{χ} / (π mrad mm) 3,5 3 2,5 2 1,5 0,5 1,5 2 2,5 5,5 0 1 3 3,5 4 4,5 5 z / (cm)

Feld auf der Achse $\Delta x = \Delta z = 200 \mu m$, N_p = 50.000

Feld auf der Achse $\Delta x = \Delta z = 100 \mu m$, N_p = 50.000

Feld auf der Achse $\Delta x = \Delta z = 100 \mu m$, N_p = 200.000

Feld auf der Achse

 $\Delta x = \Delta z = 50 \mu m$, N_p = 500.000

Feld auf der Achse

 $\Delta x = 50 \mu m$, $\Delta z = 25 \mu m$, N_p = 1.000.000

Strahldynamiksimulationen

Hoher Ordnung PIC

$$\vec{E}(\vec{x},t) = \sum_{i=1}^{N} \sum_{p=0}^{P} \vec{e}_{i;p}(t) \varphi_{i;p}(\vec{x}), \quad \vec{H}(\vec{x},t) = \sum_{i=1}^{N} \sum_{p=0}^{P} \vec{h}_{i;p}(t) \varphi_{i;p}(\vec{x})$$

Hoher Ordnung PIC

"NGP"-Strominterpolation mit hoher Ordnung:

$$\vec{j}_{i;p} = q\vec{v}_p \int_{t^n}^{t^{n+1}} dt \int d^3\vec{x} \,\delta\left(\vec{x} - \vec{x}_p\right) \varphi_{i;p}\left(\vec{x}\right)$$

Ladungserhaltene Stromintegration über <u>Schnittpfade</u> für:

- a) jedes Teilchen
- b) jede Zelle und
- c) jede Approximationsfunktion

Strahldynamiksimulationen

Hoher Ordnung PIC

"CIC"–Strominterpolation mit hoher Ordnung (seit 2010):

$$\vec{j}_{i;p} = q\vec{v}_p \int_{t^n}^{t^{n+1}} dt \int d^3 \vec{x} \,\theta_{\Delta x} \left(\vec{x} - \vec{x}_p\right) \varphi_{i;p}(\vec{x})$$

Ladungserhaltene Stromintegration über <u>Schnittvolumina</u> für:

- a) jedes Teilchen
- b) jede Zelle und
- c) jede Approximationsfunktion

Hoher Ordnung PIC

Feld auf der Achse

Feld auf der Achse

Feld auf der Achse

5,5 PIC ASTRA - N_r = 24, N_l = 64, N_p = 200.000 5 - ASTRA - N_r= 96, N_l= 256, N_p = 1.000.000 4,5 $\epsilon_{\!\times}$ / (π mrad mm) 4 3,5 3 2,5 2 8 12 16 20 24 28 32 0 4 z / (cm)

Transversale Emittanz

Abweichung der longitudinalen Ausdehnung

Abweichung der longitudinalen Emittanz

Vergleich ASTRA - PIC

ASTRA: z = 4.95 cm

Vergleich ASTRA - PIC

ASTRA: z = 4.95 cm

Vergleich ASTRA - PIC

ASTRA: z = 9.97 cm

Vergleich ASTRA - PIC

ASTRA: z = 9.97 cm

At mm

Vergleich ASTRA - PIC

ASTRA: z = 19.97 cm

Vergleich ASTRA - PIC

ASTRA: z = 19.97 cm

Vergleich ASTRA - PIC

ASTRA: z = 29.95 cm

PIC: z = 30 cm

Vergleich ASTRA - PIC

ASTRA: z = 29.95 cm

Nichtsymmetrische Bunche

Nichtsymmetrische Bunche

Bunch Position

Transversale Emittanz: 2/5 - 3/5 Q

Transversale Emittanz: 1/3 - 2/3 Q

ε_z - 1/1 ε_z - 2/5 Long. emittance / (π keV mm) ε_z - 1/3 z / (cm)

Longitudinale Emittanz

Transverse Phase-Space Transverse Phase-Space Transverse Distribution 8 8 density 2 2 **DDTST** mercui particla (0.5 pz/pz -−10 0 o • PW/Pz -10 0 TICLOUL 82-8 7 φ 2 -2 2 2 -2 Ó ۵ -2 0

Symmetrisch: z = 5 cm

Unsymmetrisch 1/3 – 2/3: z = 5 cm

Symmetrisch: z = 5 cm

Unsymmetrisch 1/3 – 2/3: z = 5 cm

Symmetrisch: z = 10 cm

Unsymmetrisch 1/3 – 2/3: z = 10 cm

Symmetrisch: z = 10 cm

Unsymmetrisch 1/3 – 2/3: z = 10 cm

Symmetrisch: z = 20 cm

Unsymmetrisch 1/3 – 2/3: z = 20 cm

Symmetrisch: z = 20 cm

Aps/ps

Symmetrisch: z = 30 cm

Unsymmetrisch 1/3 – 2/3: z = 30 cm

Symmetrisch: z = 30 cm

Unsymmetrisch 1/3 – 2/3: z = 30 cm

Diskussion

- Genaue PIC-3D Simulationen f
 ür die XFEL sind m
 öglich (allerdings nicht
 über > 10m-Strecken)
- ASTRA und PIC im rotationssymmetrischen Fall stimmen insgesamt gut überein (~10% Abweichung in der transversalen Emittanz)
- 3. Weitere Simulationen sind notwendig (long. Effekte, Konvergenz, Modellierung)
- 4. Nichtsymmetrischer Bunche:
 - Kaum Unterschiede im long. Phasenraum
 - Bunchdaten zur weiteren Analyse stehen zur Verfügung

- Themenbereiche:
 - 1. Strahldynamiksimulationen für die XFEL
 - 2. Wakefeldberechnungen für PETRA III
 - Problemstellung
 - CAD Modellierung
 - Simulationsergebnisse
 - 1. Wakefelder kurzer Bunche in der Undulatorkammer

Problemstellung

In-Vakuum Undulator für PETRA III: geometrische Wakefelder

Source: R. Reiser et al

Source: Hideo Kitamura

- CAD Modellierung
 - 1. Nur mechanische Konstruktionszeichnung steht zur Verfügung
 - 2. Erstellung vorläufigen CAD Modells bei TEMF
 - Dimensionen (teilweise) aus der technischen Zeichnung
 - Unbekannte Strecken mit Graphikprogramm →
 Geometriefehler
 - Nicht alle Wakerelevanten Details aus der Zeichnung ersichtlich

CAD Modellierung

Simulationsergebnisse

0,4 Gap = 7 mm0,3 Gap = 10 mm W_z / (V/pC) 0,2 $\sigma_z = 1$ cm 0,1 0 -0,1 -2 2 0 4 6 -4 s/σ

Longitudinales Wakepotential

Simulationsergebnisse

Kick- und Lossfaktoren

	Gap = 7mm	Gap = 10mm
<i>K_x</i> (V / nC m)	0.04	-0.01
<i>K_y</i> (V / nC m)	0.18	-0.28
K _{loss} (V / nC)	21.3	46.1

- Themenbereiche:
 - 1. Strahldynamiksimulationen für die XFEL
 - 2. Wakefeldberechnungen für PETRA III
 - 3. Wakefelder kurzer Bunche in der Undulatorkammer
 - Problemstellung
 - Methodik
 - Simulationen
 - Diskussion

Problemstellung

Problemstellung: Annahmen 1

Problemstellung: Annahmen 2

Problemstellung: zusätzliches Vergleichsmodell

Methodik

1. PBCI in 3D

- 2. Transversales Verhältnis Strahlrohr vs. σ sehr groß
 - Speicherbedarf ist hoch (~300 mil. Gitterpunkte für σ = 10µm)
- 3. Abstand Blenden (Abschattung) vs. σ sehr lang
 - Lange Rechenzeit (10⁵-10⁶ Zeitschritte)
- 4. Seit 2010: Symmetrierandbedingen in PBCI
 - Ausreichend für die elliptische Geometrie
 - Reduktion des Speichers / Rechenzeit um Faktor 4

Wakefelder kurzer Bunche

Diskussion

- 1. Simulationen mit 25-10µm Bunches ohne weiteres Möglich
- 2. Kürzere Bunche (bis 1µm) machbar, aber
 - Hohes Rechen- und Zeitleistung (3 Monate cluster shutdown in 2010)
- 3. Für σ_z < 1µm ist eine komplett neue Entwicklung eines parallelen 2D-Codes notwendig
- 4. Abschattungslänge für die Untersuchten Fälle liegt zwischen 0.5-1.5mm
 - Feiner aufgelöste Simulationen in diesem Bereich werden noch geliefert

