

Center for the Advancement of Natural Discoveries using Light Emission

Difference Orbit Correction in XFEL SASE1

Artsrun Sargsyan

DESY – Beam Dynamic Meeting 18 December 2012

Contents

- Introduction
- BPM resolution errors impact on rms residual orbit

 a) Theoretical estimate
 b) Numerical evaluation
- Summary

Introduction

Global orbit correction with SVD.

• Global difference orbit correction with SVD without BPM resolution errors.

$$\vec{m}^{(on)} = \begin{pmatrix} m_1^{(on)} \\ m_2^{(on)} \\ \vdots \\ m_N^{(on)} \end{pmatrix}, \quad \vec{m}^{(off)} = \begin{pmatrix} m_1^{(off)} \\ m_2^{(off)} \\ \vdots \\ \vdots \\ m_N^{(off)} \end{pmatrix}, \quad m_k^{(on)} = \sum_{i < k} \Theta_i^{(on)} M_{12}^{(on)} \left(z_i^{(quad)}, z_k^{(BPM)} \right) - b_k, \quad m_k^{(off)} = \sum_{i < k} \Theta_i^{(off)} M_{12}^{(off)} \left(z_i^{(quad)}, z_k^{(BPM)} \right) - b_k,$$

$$\vec{m}^{(off)} + R^{(off)}\vec{\theta} - \left(\vec{m}^{(on)} + R^{(on)}\vec{\theta}\right) = 0, \quad \blacksquare \quad \vec{\theta} = (R^{(on)} - R^{(off)})^+ (\vec{m}^{(off)} - \vec{m}^{(on)})^+ (\vec{\theta}^{(off)} - \vec{\theta}^{(on)})^+ (\vec{\theta}^{(off)} - \vec{\theta}^{(off)})^+ (\vec{\theta}^{(off)} - \vec{\theta}^{(on)})^+ (\vec{\theta}^{(off)} - \vec{\theta}^{(on)})^+ (\vec{\theta}^{(off)} - \vec{\theta}^{(off)})^+ (\vec{\theta}^{(off)} - \vec{\theta}^{(off)})^$$

If on- and off- energy beams are nor separated transversely, then

$$\frac{\Theta_q^{(off)}}{\Theta_q^{(on)}} = \frac{\theta_c^{(off)}}{\theta_c^{(on)}}$$

BPM resolution errors impact

$$m_{k}^{(on)} = r_{k}(t_{1}) + \sum_{i < k} \Theta_{i}^{(on)} M_{12}^{(on)}(z_{i}^{(quad)}, z_{k}^{(BPM)}) - b_{k},$$

$$m_{k}^{(off)} = r_{k}(t_{2}) + x_{k}^{(inj)} + \sum_{i < k} \Theta_{i}^{(off)} M_{12}^{(off)}(z_{i}^{(quad)}, z_{k}^{(BPM)}) - b_{k}$$

$$M_{k}^{(off)} = r_{k}(t_{2}) + x_{k}^{(inj)} + \sum_{i < k} \Theta_{i}^{(off)} M_{12}^{(off)}(z_{i}^{(quad)}, z_{k}^{(BPM)}) - b_{k}$$

$$M_{k}^{(off)} = r_{k}(t_{2}) + x_{k}^{(inj)} + \sum_{i < k} \Theta_{i}^{(off)} M_{12}^{(off)}(z_{i}^{(quad)}, z_{k}^{(BPM)}) - b_{k}$$

$$M_{k}^{(off)} = r_{k}(t_{2}) + x_{k}^{(inj)} + \sum_{i < k} \Theta_{i}^{(off)} M_{12}^{(off)}(z_{i}^{(quad)}, z_{k}^{(BPM)}) - b_{k}$$

$$M_{k}^{(off)} = r_{k}(t_{2}) + x_{k}^{(inj)} + \sum_{i < k} \Theta_{i}^{(off)} M_{12}^{(off)}(z_{i}^{(quad)}, z_{k}^{(BPM)}) - b_{k}$$

$$M_{k}^{(off)} = r_{k}(t_{2}) + x_{k}^{(inj)} + \sum_{i < k} \Theta_{i}^{(off)} M_{12}^{(off)}(z_{i}^{(quad)}, z_{k}^{(BPM)}) - b_{k}$$

$$M_{k}^{(off)} = r_{k}(t_{2}) + x_{k}^{(inj)} + \sum_{i < k} \Theta_{i}^{(off)} M_{12}^{(off)}(z_{i}^{(quad)}, z_{k}^{(BPM)}) - b_{k}$$

$$M_{k}^{(off)} = r_{k}(t_{2}) + x_{k}^{(inj)} + \sum_{i < k} \Theta_{i}^{(off)} M_{12}^{(off)}(z_{i}^{(quad)}, z_{k}^{(BPM)}) - b_{k}$$

$$M_{k}^{(off)} = r_{k}(t_{2}) + x_{k}^{(inj)} + \sum_{i < k} \Theta_{i}^{(off)} M_{12}^{(off)}(z_{i}^{(quad)}, z_{k}^{(BPM)}) - b_{k}$$

$$M_{k}^{(off)} = r_{k}(t_{2}) + x_{k}^{(off)} + \sum_{i < k} \Theta_{i}^{(off)} M_{12}^{(off)}(z_{i}^{(quad)}, z_{k}^{(BPM)}) - b_{k}$$

$$M_{k}^{(off)} = r_{k}(t_{2}) + \sum_{i < k} \Theta_{i}^{(off)} +$$

- Theoretical estimate
- In smooth focusing approx.
 - For long line of FODO sells

δ

$$x_{rms}(z_k) \sim \frac{\sigma_{res} \mu^2}{|\delta|} k^{3/2},$$

V. Sahakyan A. Sargsyan V. Tsakanov

- σ_{res} rms of BPM resolution errors
 - relative energy deviation between on- and off- energy beams
- μ the phase advance per FODO sell

- Numerical evaluation
 - Numerical simulations ELEGANT
 - The global difference orbit correction MATLAB

σ_{res}	1 <i>µ</i> m	10 µm	100µm
δ	-0.02	-0.02	-0.02
μ	0.4 rad	0.4 rad	0.4 rad
a*k ^{1.5} fit	1.45e-5 k ^{1.5}	1.45e-4 k ^{1.5}	1.45e-3 k ^{1.5}

Table 1. $\sigma_{\rm res}$ -dependence of $X_{\rm rms}$

$\sigma_{\it res}$	1 μm	1 µm	1µm
δ	-0.02	-0.2	-0.4
μ	0.4 rad	0.4 rad	0.4 rad
a*k ^{1.5} fit	1.45e-5 k ^{1.5}	1.7e-6 k ^{1.5}	1e-6 k ^{1.5}

Table 2. δ -dependence of X_{rms}

σ_{res}	1 μm	1 μm	1µm
δ	-0.02	-0.2	-0.4
μ	0.2 rad	0.4 rad	0.8 rad
a*k ^{1.5} fit	7.37e-6 k ^{1.5}	1.45e-5 k ^{1.5}	2.78e-5 k ^{1.5}

Table 3. μ -dependence of X_{rms}

 $X_{\rm rms}$ and power function fit a*n^b for SASE1 for $\sigma_{\rm res} = 1 \ \mu m$, $\delta = -0.02$, $\mu = 0.4$ rad.

Doubling the quantity of BPMs leads to the reduction of X_{rms} by a factor of about $\sqrt{2}$.

Use of very precise or "perfect" BPMs (by means of resolution)

Only the first half of BPMs has $1\mu m$ rms resolution errors

Only the first five BPMs have 1 µm rms resolution errors

Summary

- Difference orbit correction is considered for XFEL SASE1 section.
- BPM resolution errors impact on rms residual orbit growth is evaluated numerically using ELEGANT and MATLAB.
- Comparison of numerical results with theoretical estimate was performed.
- Possible ways of residual orbit growth reduction are considered.

THANK YOU FOR ATTENTION