Eigenmode Calculations for a 1.5 Cell SRF Gun Derived from a TESLA Cavity

W. Ackermann, H. De Gersem Institute for Accelerator Science and Electromagnetic Fields (TEMF), TU Darmstadt

Outline

- Motivation
- Computational model
 - Fundamental input power coupler
 - Pickup antenna as a field probe
- Numerical results
 - Electromagnetic fields along the cavity axis
 - Electromagnetic fields in the backplane of the half cell
- Summary / Outlook

Motivation

Transition From Pulsed Operation to CW

Normal Conductive Gun

https://www.hzdr.de/db/Cms?pOid=41402&pNid=2154

http://pitz.desy.de/news/2004/new_gun_for_pitz/

SRF Gun (Example)

Outline

Motivation

- Computational model
 - Fundamental input power coupler
 - Pickup antenna as a field probe
- Numerical results
 - Electromagnetic fields along the cavity axis
 - Electromagnetic fields in the backplane of the half cell
- Summary / Outlook

Computational Model

Model of a 1.5 Cell SRF Gun (from TESLA Cavity)

A symmetric mesh is generated by meshing only a quarter of the model and assembling the full mesh in an additional processing step.

Computational Model

Model of a 1.5 Cell SRF Gun (from TESLA Cavity)

Example:

2.134.554 curved tetrahedral elements for the full mesh

Computational Model

- Model of a 1.5 Cell SRF Gun (from TESLA Cavity)
 - Cut view

- Model of a 1.5 Cell SRF Gun (from TESLA Cavity)
 - Tune Antenna Penetration (Example: L = 45 mm)

Fields along the cavity axis

Fields along the cavity axis

Fields along the cavity axis

∑×

HOM Coupler Variations

HOM Coupler Variations

HOM Coupler Variations (zoom)

Outline

Motivation

- Computational model
 - Fundamental input power coupler
 - Pickup antenna as a field probe
- Numerical results
 - Electromagnetic fields along the cavity axis
 - Electromagnetic fields in the backplane of the half cell
- Summary / Outlook

1.5 Cell Gun Cavity with Field Probe

1.5 Cell Gun Cavity with Field Probe

1.5 Cell Gun Cavity with Field Probe

Field Probe Parameter

Naming convention adopted from Alexey Sulimov, "SRF Gun Simulations of Probe", October 12, 2018

1.5 Cell Gun Cavity with Field Probe

1.5 Cell Gun Cavity with Field Probe

Mesh Distribution Backplane

 $R_p = 70 \text{ mm}$

Electric Field Strength

 $R_p = 70 \text{ mm}$

Electric Field Strength

TU Darmstadt | Institute for Accelerator Science and Electromagnetic Fields (TEMF) | Wolfgang Ackermann 6/14/2019

 $R_p = 70 \text{ mm}$

Electric Field Strength

Electric Field Strength

 $R_p = 70 \text{ mm}$

Electric Field Strength $R_p = 70 \text{ mm}$ $|\vec{E}|$ Abs(E) V/m 8×10⁶ 6×10^{6} 4×10^{6} 2×10^{6} r60 65 70 75 80 85 mm

Magnetic Flux Density

 $R_p = 70 \text{ mm}$

Magnetic Flux Density

 $R_p = 70 \text{ mm}$

Magnetic Flux Density

Magnetic Flux Density

 $R_p = 70 \text{ mm}$

 $R_p = 70 \text{ mm}$

Magnetic Flux Density

 $R_p = 70 \text{ mm}$

Magnetic Flux Density

40 🟹

Fields along the cavity axis

Fields along the cavity axis

Fields along the cavity axis

∑×

Summary / Outlook

Summary

- Fundamental input power coupler

The desired quality factor can be obtained with less serious coupler fields on the axis using a larger distance from the coupler to the cavity.

- Pickup antenna as a field probe

A drilled hole in the backplane disturbs the induced current distribution such that locally higher magnetic fields can be observed.

Outlook

- Further parameter studies to examine?
- Export a field map around the axis.

