Calculation of a SC Gun Cavity with Pickup

the following proposal assumes that we do not need HOM couplers, but that is not certain

an equivalent network

a symmetric 2-port system

equation of motion for external field

field stimulation by driven motion

results / remarks / summary

An Equivalent Network

 $\nabla \times \nabla \times \mathbf{E} + \mu \varepsilon \frac{\partial^2}{\partial t^2} \mathbf{E} = -\frac{\partial}{\partial t} \mu \mathbf{J}$ $\nabla \times \nabla \times \mathbf{E}_{\nu} = \mu \varepsilon \omega_{\nu}^{2} \mathbf{E}_{\nu}$ $\mathbf{E}(\mathbf{r},t) = \sum \alpha_{\nu}(t) \mathbf{E}_{\nu}(\mathbf{r})$ $\mu \varepsilon \sum \left(\omega_{\nu}^{2} + \frac{\partial^{2}}{\partial t^{2}} \right) \alpha_{\nu}(t) \mathbf{E}_{\nu}(\mathbf{r}) = -\frac{\partial}{\partial t} \mu \mathbf{J}$ $\rightarrow \left(\omega_{v}^{2} + \frac{\partial^{2}}{\partial t^{2}}\right) \alpha_{v}\left(t\right) = -\frac{\partial}{\partial t} \underbrace{\int \mathbf{E}_{v} \mathbf{J} dV}_{g_{v}}\left(t\right)$ $\int \varepsilon \mathbf{E}_{v} \mathbf{E}_{\mu} dV = W_{v} \delta_{v\mu}$ $\mathbf{J} = q\dot{\mathbf{r}}_{n}(t)\delta(\mathbf{r} - \mathbf{r}_{n}(t)) \rightarrow g_{\nu}(t) = q\dot{\mathbf{r}}_{n}(t) \cdot \mathbf{E}_{\nu}(\mathbf{r}_{n}(t))$

Waveguide Port

discretize cavity with coupler and (TEM) waveguide

make the waveguide long enough so that higher waveguide modes at the end are negligible \rightarrow description by discrete quantities

calculate eigenmodes with PMC boundary after the waveguide; consider the port stimulation by a 2d current distribution (proportional to the transverse field pattern of the waveguide mode) \rightarrow eigenmode analysis as before

calculate the generator current with help of an external network

waveguide parameters:

this is usually done in frequency domain: $i(t) = I_{dc} \sum_{\alpha = -\infty}^{\infty} \delta(t - \alpha T) = I_{dc} + 2I_{dc} \sum_{\beta = 1}^{\infty} \cos(\beta 2\pi t/T)$

$$Z = \frac{V}{I_{ac}} = \frac{1}{j\omega C + \frac{1}{j\omega L} + \frac{1}{R_i}}$$

$$\underbrace{\left(\frac{a+b}{\sqrt{R_g}}\right)}_{V} = Z\left(\frac{a-b}{\sqrt{R_g}} - I_{ac}\right)$$

port quantities beam quantities in the following: $\frac{1}{R_i} = 0$ $R_g \to R$ $I_{ac} \to I$

$$Z = \frac{1}{C} \frac{j\omega}{\omega_0^2 - \omega^2} \approx \frac{-j}{2\Delta\omega C}$$
$$\Delta\omega = \omega - \omega_0$$

$$r = \frac{1 - j2Q\frac{\Delta\omega}{\omega_0}}{1 + j2Q\frac{\Delta\omega}{\omega_0}} \qquad Q = \omega_0 RC$$

Symmetric Two Port System

symmetric and antisymmetric operation (without beam)

$$\begin{pmatrix} a_s \\ a_a \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
$$\begin{pmatrix} b_s \\ b_a \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

$$\begin{pmatrix} b_s \\ b_a \end{pmatrix} = \begin{pmatrix} r_s & 0 \\ 0 & r_a \end{pmatrix} \begin{pmatrix} a_s \\ a_a \end{pmatrix}$$

symmetric:

anti-symmetric: $(a_1 + b_1)\sqrt{R} = (a_2 + b_2)\sqrt{R} \rightarrow a_a = -b_a \rightarrow r_a = -1$

s/a system
$$\begin{pmatrix} b_s \\ b_a \end{pmatrix} = \begin{pmatrix} r_s & 0 \\ 0 & r_a \end{pmatrix} \begin{pmatrix} a_s \\ a_a \end{pmatrix}$$

1/2 system $\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} s_{11} & s_{12} \\ s_{12} & s_{11} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$
 $s_{11} = \frac{r_s + r_a}{2}$
 $s_{12} = \frac{r_s - r_a}{2}$

calculation by MWS $\rightarrow Q = 5 \cdot 10^6$

this corresponds to the theoretical result after a shift of the reference plane

EoM for External Field $\rightarrow \mathbf{r}_{p}(t)$

Voltages for Driven Motion

we are interested in the following "voltage" integrals for driven particle motion:

$$V = \frac{\mathcal{E}_{kin}}{q} = \int E_z(z) \exp(j\omega_0 t_p(z)) dz$$
$$V_{\perp} = \frac{c}{q} \Delta p_x = \frac{1}{q} \int F_x(z_p(t)) \exp(j\omega_0 t) c dt$$

$$\rightarrow p = \frac{\beta}{c} \left(\mathbf{E}_{kin} + mc^2 \right)$$
$$\frac{\Delta p_x}{p} = \frac{V_\perp}{\beta \left(V + mc^2/q \right)}$$

with $z_p(t)$ and $t_p(z)$ the motion in due to external fields

f.i.:
$$a_s = 90.9 \sqrt{VA} \rightarrow p = 4.27 \text{ MeV/c} \rightarrow V = 3.79 \text{ MV}$$

 $V_{\perp} = 0 \text{ V}$

or:
$$a_a = 1 \sqrt{VA} \rightarrow V = 0 V$$

 $V_{\perp} = -0.830 V$

↓ we know all what we need!

putting the pieces together

operation with beam, on resonance $(Z \rightarrow \infty)$

one port system:
$$b = a - I\sqrt{R}$$

 $V = a2\sqrt{R} - IR$
 $V_{\perp} = aX_{a1} - IX_{I1}$
 $R \approx \frac{1}{6}Q_1\left(\frac{R}{Q}\right)_{TESLA} = 8.7 \cdot 10^8 \text{ Ohm}$
 $Q_1 = 10 \cdot 10^6$

two port system:
$$b_s = a_s - I\sqrt{R/2}$$

 $b_a = -a_a$
 $V = a_s\sqrt{2R} - IR/2$ $\rightarrow R = \frac{1}{2}\left(\frac{V(a_s,0)}{a_s}\right)^2 = 2\frac{V(0,I)}{I}$
 $V_{\perp} = a_a X_{a2}$
 $X_{I2} = 0$ $\rightarrow X_{a2} = \frac{V_{\perp}(a_a)}{a_a}$

$$R = \frac{1}{2} \left(\frac{3.79 \text{ MV}}{90.9 \sqrt{\text{VA}}} \right)^2 = 8.7 \cdot 10^8 \text{ Ohm} \qquad X_{a2} = -\frac{0.830 \text{ V}}{1 \sqrt{\text{VA}}} = -0.830 \sqrt{\text{Ohm}} \qquad Q_2 = 5 \cdot 10^6$$

New One-Port System

$$V_{\parallel} = \sqrt{R} (1+r_2) a_1 - \frac{R}{2} (1+r_2) I$$
$$b_1 = r_2 a_1 - \frac{1+r_2}{2} \sqrt{R} I$$
$$V_{\perp} = X_{a2} \frac{1 \ominus r_2}{\sqrt{2}} a_1 + \frac{X_{a2} \sqrt{R}}{2\sqrt{2}} r_2 I$$
$$b_2 = a_1 - \frac{I_s \sqrt{R}}{2} = \frac{V_{\parallel}}{(1+r_2)\sqrt{R}}$$

for $r_2 = 1$ the new system behaves exactly like the original one-port system with Q = 10E6

no transverse field is stimulated by the klystron (a_1) ; the stimulation by the beam (I) is not avoidable; this is the same for any passive compensation

 b_2 is direct proportional to the cavity voltage; a small part of b_2 could be coupled out and used as **pickup** for the cavity voltage!

in numbers:
$$Q = 10 \cdot 10^6$$

 $R = 8.7 \cdot 10^8$ Ohm
 $X_{a2} = -0.830 \sqrt{\text{Ohm}}$
 $V_{\parallel} = 3.79 \text{ MV}$

I _{de} / mA	0	2.2	0.1
$P_{ m 1f}$ / kW	2.06	8.26	2.16
$P_{1\mathrm{r}}$ / kW	2.06	0	1.78
V_{\perp} / V	0	-37.7	-1.7
$\Delta p_x / p$	0	-8.8E-6	-0.4E-6

operation with 100 pC, 1MHz only 379 W go to the beam increase Q to decrease P_{1f}

method 1: decrease coupling, pull antennas back

Method 2: use (external) matching network

$$\begin{pmatrix} b_0 \\ a_1 \end{pmatrix} = \frac{1}{\underbrace{1+h^2} \begin{pmatrix} 1-h^2 & 2h \\ 2h & h^2-1 \end{pmatrix}} \begin{pmatrix} a_0 \\ b_1 \end{pmatrix}$$

f.i. lambda/4 transformer

$$Q_0 = h^2 Q_1$$

$$b_0 = a_0 - h\sqrt{R}I$$

$$V_{\parallel} = 2h\sqrt{R}a_0 - h^2 RI$$

$$V_{\perp} = \frac{X_{a2}\sqrt{R}}{2\sqrt{2}}I$$

for V_{\parallel} = 3.79 MV, h = 2 and Q_0 = 4	0E6:
--	------

I _{de} / mA	0	0.1
$P_{\rm 1f}$ / W	516	723
P_{1r} / W	516	344
V_{\perp} / V	0	-1.7
$\Delta p_x / p$	0	-0.4E-6

Remarks

the **used** discrete network is not empirical but based on Maxwell's equations

one mode model: the accelerating mode is strongly dominant; therefore we neglected all other modes

in general the excitation of modes by the beam and by ports is a **coupled problem**:

$$\left(\omega_{v}^{2} + \frac{\partial^{2}}{\partial t^{2}} \right) \alpha_{v}(t) = -\frac{\partial}{\partial t} \left(g_{v}(t) + h_{v}(t) \right) \qquad g_{v}(t) = \int \mathbf{E}_{v} \mathbf{J} dV \qquad \text{beam}$$

$$h_{v}(t) \sim (\mathbf{a} - b) \int \mathbf{E}_{v} \mathbf{E}_{\perp, \text{port}} dA \qquad \text{port}$$

$$\mathbf{a} + b \sim \sum_{v} \alpha_{v} \int \mathbf{E}_{v} \mathbf{E}_{\perp, \text{port}} dA \qquad \text{coupling}$$

usual equivalent networks for multi-cell cavities are empirical

Summary

symmetrical "inner" geometry with asymmetric outer network

one-port coupler

pickup in the compensation stub \rightarrow no interference with the cavity geometry or peak fields; no crosstalk from main port

perfect symmetry due to external stimulation (klystron)

very good symmetry due to beam stimulation

antenna position is fixed, Q_{ext} can be controlled by outer network (this is possible with a moderate standing wave ratio and reasonable peak fields)

if we need HOM couplers: try to keep the symmetry

loop coupling

Martin Dohlus Deutsches Elektronen Synchrotron TESLA Meeting, April 2002