Recent Upgrades of the Optical Synchronization System at FLASH

FEL Seminar

Jost Müller on behalf of the LbSync team Hamburg, 5. February 2019

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Outline

01 Introduction

- laser-based synchronization at DESY
- FLASH: Why upgrading the LbSync system?

02 Optical Reference & Distribution

- overview
- master laser oscillator
- synchronization laboratory
- fiber link stabilization
- MicroTCA.4

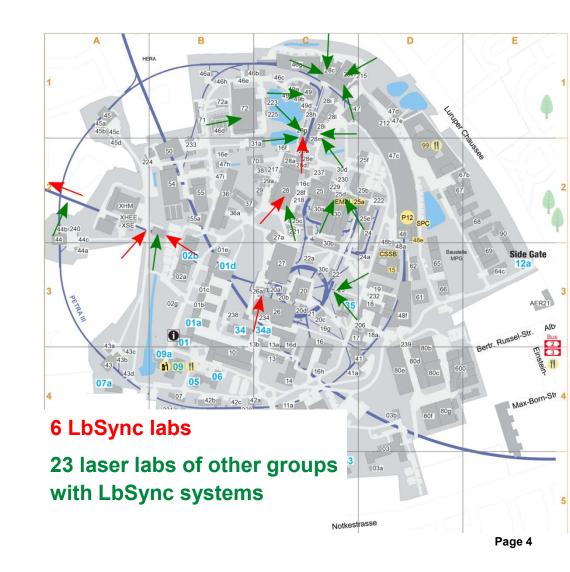
03 End Stations

- laser-to-RF phase detection and RF resynchronization
- laser synchronization
- (BAM)

04 FLASH Upgrades 2018+

- overall timeline
- upgrades 2018
- status & next steps

05 Summary


Introduction

LbSync Activities at DESY

Group Structure and Historical Overview

LbSync team: currently 7 members

- 2004: first developments started in collaboration with MIT, hosted in FLA group,
- 2008: LbSync operation at FLASH started
- 2010: project moved to MSK
- 2017: first experiments at XFEL using optical synchronization
- 2018: renewal of FLASH LbSync system
- 2018: SINBAD injector laser synchronization
- 2019: finish installation of XFEL LbSync system
- 2020: finish renewal of FLASH LbSync system
- 2020+: installation LbSync at SINBAD

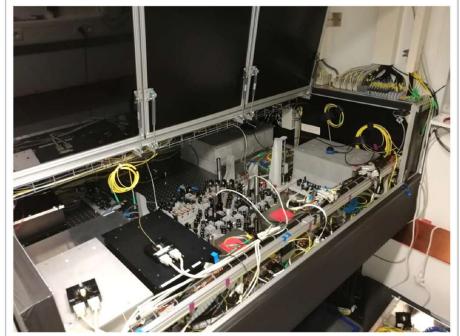
DESY.

FLASH Optical Synchronization Upgrades 2018+ Why Upgrading?

Performance

- MZI-based MLO synchronization: jitter 30 fs \rightarrow 3 fs, drift stability
- single-mode fiber (SMF) replaced by polarization-maintaining (PMF)
 - jitter 3 fs \rightarrow 0.5 fs
 - enhanced drift stability
- MicroTCA.4-based system
- laser synchronization: jitter 15 fs \rightarrow 5 fs

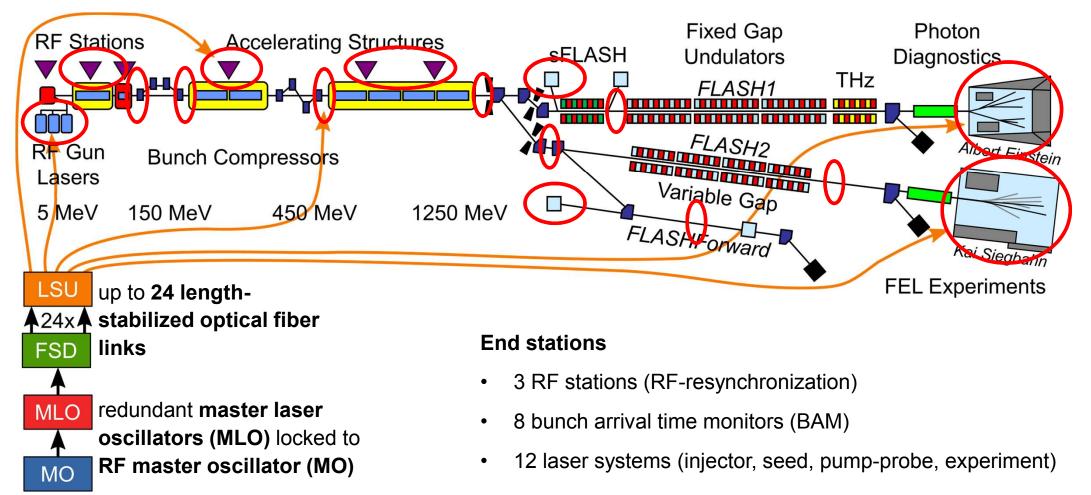
Space


- old structure (optical table, infrastructure, etc) allowed **only 8 links**
- 24 optical links required including potential future upgrades

Discontinued Components

- VME system
- migration of all control electronics to MicroTCA.4

Reliability & Maintainability


- same setup like at the XFEL
- software / firmware

Optical Reference & Distribution

FLASH Optical Synchronization System

System Overview

Main Synchronization Laboratory XFEL

- strict separation of optics, electronics, general working space
- no electronics in optics part \rightarrow no heat sources, EMI, vibration
- environmental stability \rightarrow dT < 0.1K / dRH < 5%
- EMI → proper grounding (single grounding point), optical cables used if possible, separate potential EMI sources from critical systems
- acoustics & vibrations → optics part acoustically isolated
- UPS for operation-critical systems

main optical table at XFEL, UG5

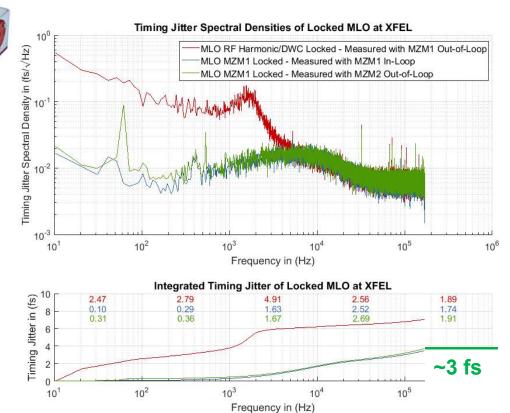
Master Laser Oscillator (MLO)

The Main Optical Reference

Oscillator

- commercial (NKT, former Onefive)
- SESAM-based, passively mode-locked
- ultra-low phase noise, Erbium, 1550 nm
- 24/7 operation

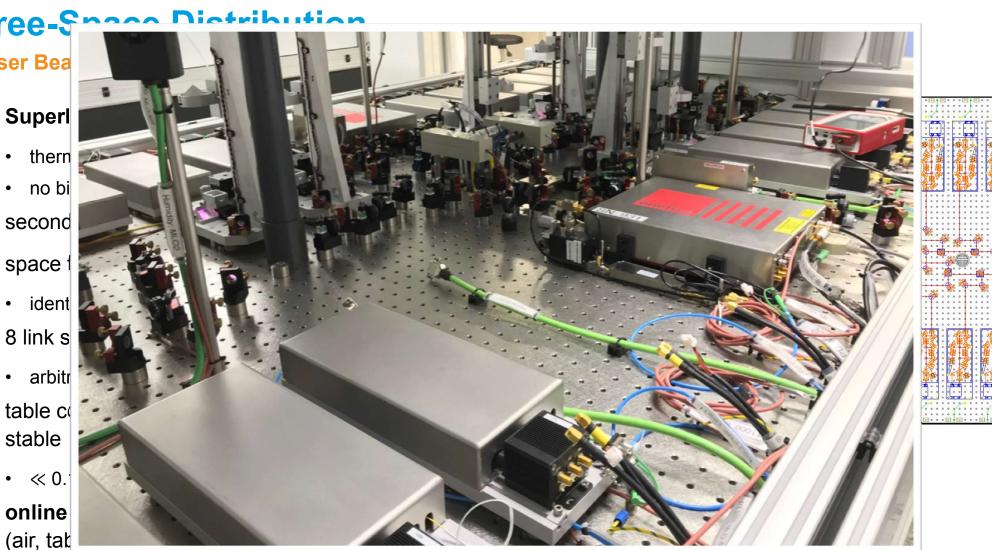
Synchronization


 laser-to-RF based, low-noise (~3 fs), low-drift, amplitude insensitive locking scheme

Redundancy

- two similar laser oscillators
- both synchronized all the time, individual setups, identical timing

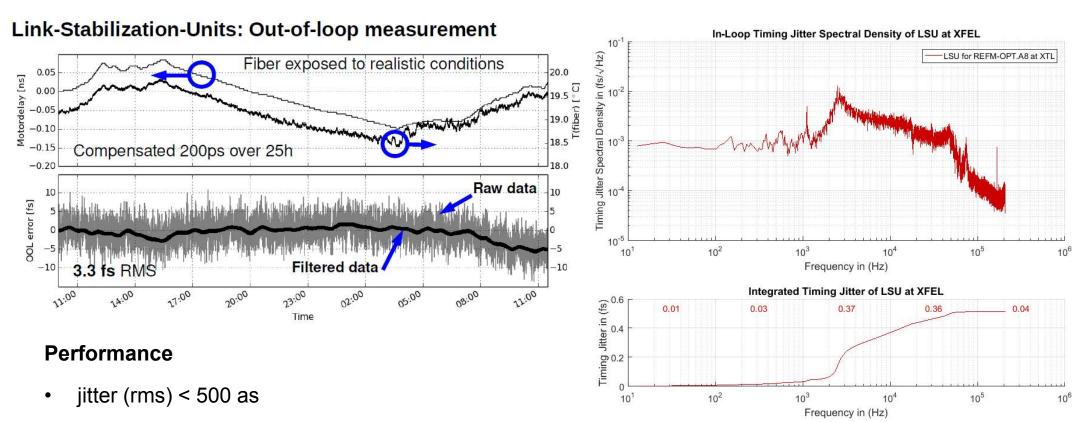
onerive


• fast switching of active source: no link lock lost, timing preserved

Free-Space Distrib

Laser Bea

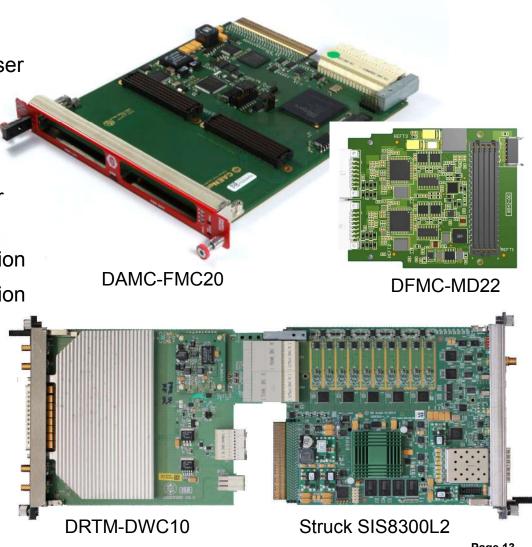
- Superl ٠
 - thern
- second •
- space (•
 - ident
- 8 link s •
 - arbitr
- table co ٠ stable
 - « 0.
- online • (air, tat



CAD drawing courtesy of C. Sydlo Page 10

Link Stabilization Units (LSU)

Measurement Results

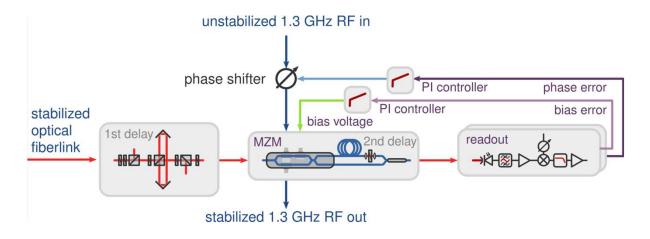


- drift: 3.3 fs / 24 h
- observed drift compensation at XFEL: up to 200 ps/km!

MicroTCA.4

MicroTCA.4 for LbSync

- DRTM-DWC10: 10 channel RF down-converter for laser synchronization
- DRTM-LASY: dedicated laser synchronization board
- DRTM-AD84: ADC board for link signal detection
- DRTM-PZT4: 4-Ch, ±100V piezo driver for link & laser synchronization
- DAMC-FMC20: FMC carrier board laser synchronization
- DAMC-FMC25: FMC carrier / FPGA link synchronization
- **SIS8300L2**: 10-Ch 125 MS/s 16-bit ADC, 2x 16-bit DACs, Virtex FPGA
- DFMC-MD22: 2-Ch, encoder
- **DFMC-UNIIO**: universal I/O, MLO/shutter control
- DFMC-AD16
- X2TIMER



End Stations

The Optical Reference Module (Refm-Opt)

Femtosecond RF Reference Phase Stabilization

- uses a stabilized fiberlink from the pulsed optical synchronization system as reference
- employs a drift-free L2RF phase detector
- locally re-synchronizes the 1.3 GHz RF reference with femtosecond precision in a PLL
- phase-stabilized Wilkinson splitter to provide multiple outputs

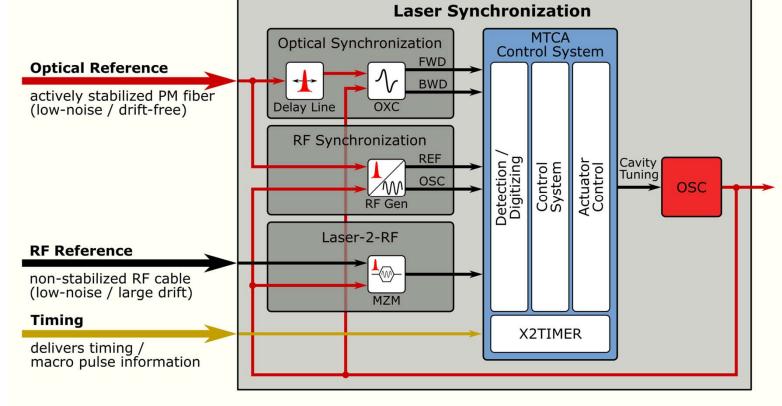
Engineering

- fully integrated stand-alone 19" module
- temperature and humidity stabilized optical compartment

Laser Synchronization

Laser Synchronization Schemes – Comparison

RF


- easy to implement
- low-jitter (<20 fs)
- large drift (hundreds of fs), AM-to-PM

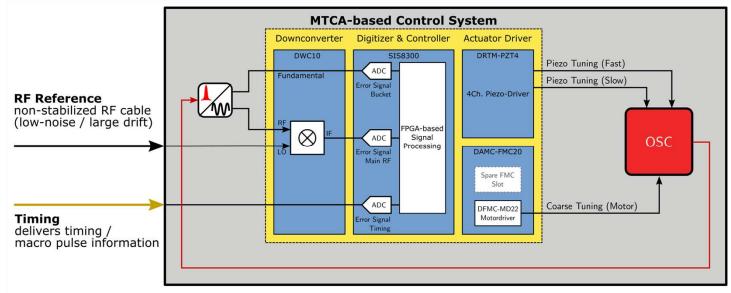
Laser-to-RF

- low-jitter (~3 fs)
- low-drift (<10 fs)
- requires high-power budget
- implementation challenging

Laser-to-Laser

- ultra low-jitter (<1 fs)
- low-drift (<10 fs)
- implementation challenging

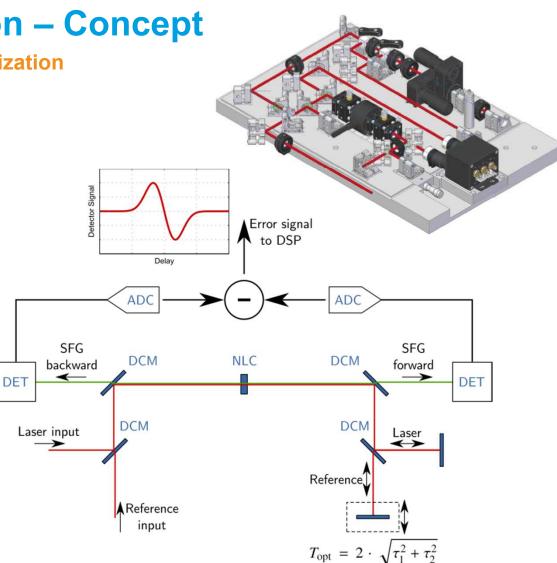
Laser Synchronization – RF-based


Based on Conventional RF Synchronization Scheme

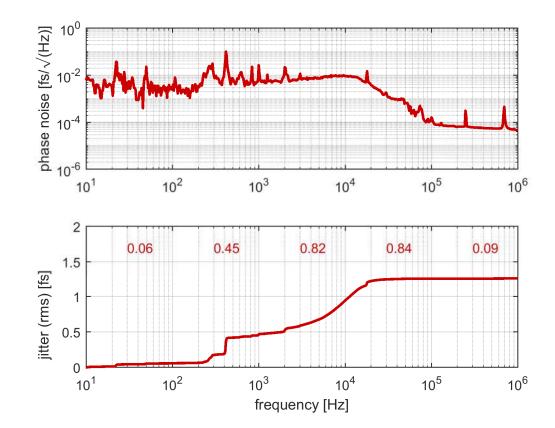
Concept

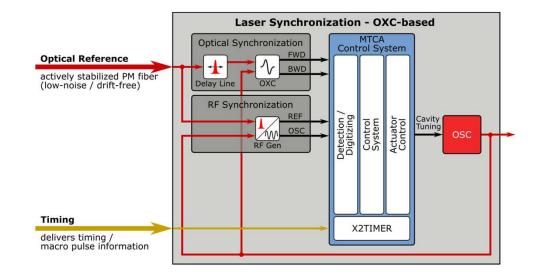
- RF mixing scheme: reference at 1.3 GHz mixed with 1.3 GHz + f_{rep}
- IF signal at *f*_{rep} is digitized by fast ADCs (clock derived from reference) and evaluated regarding magnitude/phase
- no DC error signal
 - \rightarrow locking to arbitrary phase set point possible
 - \rightarrow less EMI-related distortions
 - \rightarrow no DC-offset drifts
 - \rightarrow better 1/f noise performance

MicroTCA.4-based controls


- variety of oscillator configurations supported (1 or 2 piezos, motor/piezo stage/temperature tuning, ...)
- dedicated laser sync RTM under development

Laser-to-Laser Synchronization – Concept


Ultra-low Jitter, drift-free Laser-to-Laser Synchronization


- all-optical scheme for timing error measurement
 - high accuracy: <100as/mV
 - pure phase-sensitive measurement
 - no drifts due to RF cables etc
- based on two-color balanced optical crosscorrelation
 - aim: precisely measure the timing error between two pulsed laser sources
 - twofold sum-frequency generation in a non-linear crystal (BBO/PPKTP/PPLN)
 - differential scheme eliminates AM-related influence on the phase measurement
- one common design covering requirements of different laser systems

Laser-to-Laser Synchronization

Performance

- laser oscillator: Origami-15
- reference via 3.5 km stabilized fiber link
- PPKTP-based OXC
- 1.3 fs rms in-loop jitter [10 Hz..10 MHz]

DESY. | Recent Upgrades of the Synchronization System at FLASH | Jost Müller, 05.02.2019

FLASH LbSync Upgrades 2018+

FLASH LbSync Upgrades 2018+

Phase 1 (summer 2018)

- **complete removal** of old components (optical table, VME electronics, cabling, ...)
- infrastructure installation (new optical table & cover, cabling, rack preparation, MTCA systems, ...)
- MLO1 laser lock (RF)
- commissioning of 7 optical links

Phase 2 (summer 2019)

- commissioning of 6 optical links
- MLO2 laser lock (RF)

Phase 3 (summer 2020)

- main rack \rightarrow MO room
- commissioning of 8 optical links
- MZM-based MLO lock

Optical Links at FLASH

Timeline: Link Commissioning

2018				2019				2020			
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1	1UBC2										
2	3DBC2										
3		4DBC3		-							
4				-	FL2BURN						
5				1	1SFEL0						
6						FLASH FWD				EL OFICER	
7				1						FL2EXTR	
8				1	ACC1	-				15AC0	./
9				1	ACCI					1.0000	
10										ACC23	
11				1						ACC45	
12		or Laser (passive)								Injecto	or Laser
13		1 Seed									
14	FLASH		_								
15		FLASH2 PPL		1							
16		FLASH1 THz (pa	assive)								
17		FLASH	2 THz Streaking								
18					FLASH FWD						
19					FLASH	2 FL24					
20										FLASH2 FL23	
21										FLASH2 FL26	
22										FLASH	12 Seed

Summer Shutdown 2018

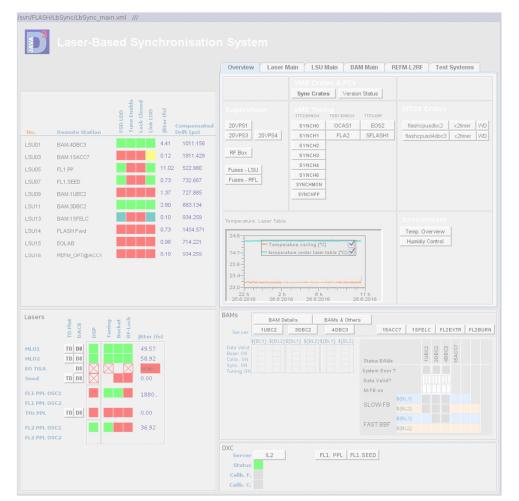
Work in progress...

before...

FLASH LbSync Upgrades 2018+

Status & Next Steps

already installed/upgraded


- main distribution system with infrastructure for 12
 LSUs
- 7 fiber links in operation: jitter 0.5 fs
- laser synchronization
 - MLO1 RF-based: jitter 17 fs
 - pump-probe laser FLASH1/2: jitter 5 fs

next steps

- fiber links
 - 6 additional links 2019
- laser synchronization
 - MLO2 installation ongoing
 - injector laser 1 OXC ongoing
 - FLASH2 THz streaking laser synchronization **ongoing**
 - PPL: redundant systems for FLASH1 & FLASH2 Q2/2019
 - exchange remaining VME systems by MTCA .4 (FLASH1 seed, THz beamline) Q2/2019

DOOCS Controls

Before...

After.

DESY.

Thanks.