

Sven Pfeiffer for the MSK-LLRF team

DESY-TEMF-Meeting Hamburg, 15.11.2018

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Outline

- 1. Current feedback scheme at FLASH
 - RF regulation at FLASH/XFEL
 - RF stability
- 2. Beam loading
 - Our biggest disturbance...
 - Multi-bunch simulation
 - Energy contribution of cavity modes
- 3. Summary & Questions

SRF cavity regulation

SRF cavity regulation

Digital LLRF regulation system

TESLA type cavity

- $f_0 = 1.3 \text{ GHz}$, I = 1.036 m, $Q_0 \approx 10^{10}$, standing wave
- HOMs 2 for damping \rightarrow previous talks
- RF field pick-up for signal detection and regulation
- Input port with adjustable coupling
 - $Q_L = [3 \cdot 10^6 \dots 4.6 \cdot 10^6]$; (CW: > 10⁷)
- Electron bunch(es) of variable charge/ repetition rate (0.5, 1, 1.5 nC @ 0.5 1, 4.5 MHz)

DESY. | Precision Control of SRF Cavities | Sven Pfeiffer, 15.11.2018

SRF cavity regulation

Digital LLRF regulation system

System Identification & FB Controller Design

... as example

Grey-box system characterization by exploiting the known system characteristics. RF field controller design based on system characterization.

RF stability (rms)	ACC1*	ACC39*	ACC23*	ACC45*	ACC67*
Ampl. Intra pulse [%]	0.0057	0.011	0.0053	0.0052	0.0069
Ampl. pulse to pulse [%]	0.0013	0.0025	0.0024	0.0007	0.0039
Phase Intra pulse [deg]	0.0065	0.0087	0.00484	0.005	0.0076
Phase pulse to pulse [deg]	0.003	0.002	0.002	0.0022	0.004

Table: In-loop regulation for 600 consecutive RF pulses

DESY. | Precision Control of SRF Cavities | Sven Pfeiffer, 15.11.2018

* at 9 MHz

Study: Receiver with attosecond-resolution In cooperation with TU Hamburg-Harburg (PhD student@DESY)

Device Under Test (DUT) is voltage controlled phase shifter

• Cavity probe signal in application

Interferometer based method to suppress the carrier

Outlook: Technical realization (2018-20??):

- Many challenges to be addressed → long-term 0.01 development
- Pulsed mode vs. continuous mode operation
- Carrier tracking algorithm, ...
- Development of ultra low noise attenuator and phase shifter

Phase

Shifter

Combiner

Adjustable

Attenuator

Splitter

Oscillator

Blue: signal in front of the interferometer (non-suppressed carrier) Green: signal behind the interferometer (suppressed carrier)

CarrierSupp_noMod_M10_524k_20171129T1352.mat; SIS8300V2, DWC8VM1, fs =81.25MHz, IF=54MHz, N=512K, D=1600

Amplifier

. . .

Beam Loading

Beam Loading

... our biggest disturbance acting to the RF field...

- Single beam transients are measurable by averaging
 - Limitation: ADC resolution (16 bit)
 - Field drop by 1 bunch: 4.25 keV/nC
 - Refilling/decay with cavity bandwidth
- LLRF controller (and beam loading compensation) tries to compensate for this
 - Remaining are fast drops which can not be compensated by FB/BLC (band-width limitation)

Beam loading simulation for an absolute cavity calibration at XFEL.

Beam Loading

... our biggest disturbance acting to the RF field...

Beam loading using pillbox cavity

- $Q_L = 3.10^6$
- q_B = 1nC
- f_B = 1 MHz

Beam loading for DC solution $(t \rightarrow \infty)$ and transient pillbox cavity approach (π -mode) is well understood.

Calibrated most of XFEL cavities using this approach.

Cavities calibrated and validation using relative energy measurement in dispersive section. Found **systematic 10% error** at XFEL &FLASH; need to be understood!

10% of additional electrical field modes for 9-cell cavity, (r/Q) or q_B not correct, ADC bandwidth limitation due to cell to cell coupling and energy flow,...

One question to be answered.

Cavity mode contribution to the beam

... started MATLAB simulation longer time ago

- Imported RF field characteristics for all RF modes from paper [J. Sekutovicz, 2007, "MULTI-CELL SUPERCONDUCTING STRUCTURES FOR HIGH ENERGY e+ e- COLLIDERS AND FREE ELECTRON LASER LINACS"]
- Symmetry check of field distribution
 - Line (odd mode) and point (even) symmetry
- Passband mode frequency taken from

Paper [E.Vogel, "High gain proportional rf control stability at TESLA cavities", 2007]

TABLE I. Frequencies of the FMs measured in the superconducting state at 116 cavities produced for the TESLA collaboration and succeeding projects [9]. The values are the mean eigenfrequency and the rms of the eigenfrequencies (not the mode bandwidths).

FM	Mean eigenfrequency of 116 cavities
π	$f_{\pi} = (1300444\pm303)\mathrm{kHz}$
$8/9 \pi$	$f_{\pi} - (785 \pm 51) \text{ kHz}$
$7/9 \pi$	$f_{\pi} - (3053 \pm 94) \text{ kHz}$
$6/9 \pi$	$f_{\pi} - (6501 \pm 157) \mathrm{kHz}$
$5/9 \pi$	$f_{\pi} = (10694 \pm 243) \mathrm{kHz}$
$4/9 \pi$	$f_{\pi} = (15\ 122 \pm 347)\ \text{kHz}$
$3/9 \pi$	$f_{\pi} = (19237\pm430)$ kHz
$2/9 \pi$	$f_{\pi} - (22594\pm503)$ kHz
$1/9 \pi$	$f_{\pi} - (24773 \pm 543) \mathrm{kHz}$

Result: Normalized beam energy contribution of all field modes

Cavity mode contribution to the beam

... started MATLAB simulation longer time ago

- Mode contributions are dependent of initial RF field phase seen by the beam
 - Important for multi bunch operation
- 1.Adding e.g. passband mode contributions driven by generator
 - Beam contribution if each mode is driven as the π-mode in amplitude
 - Modes phase w.r.t. π-mode unknown
- Adding e.g. passband mode contributions from beam driven excitation at 0 deg. lead to 5 % energy change
 - For beam drive similar to RF drive
 - Modes are not phase stable and change over time

Summary & Questions

Questions to be answered by simulation experts

1. Field probe measurement errors during beam transition

Goal: Do we measure what we expect from physical model at the probe pick-up?

- Cell-to-cell coupling during refill process
 - Transient behavior of end-cell (pick-up) identical to the others?
 - Pickup measurement during refilling time?
 - Does this refilling process with given ADC bandwidth explain the 10 % discrepancy?
- Probe pick-up location correctly chosen?
- Is maybe a 2nd probe required/helpful?

2. Additional beam loading effects

Goal: Get beam loading white-box model like the cavity equation for it's characterization.

- Assumption of on-axis and Gaussian beam properties (ideal cases)
- Beam loading to the π -mode?
- Beam loading to the remaining passband modes ($8\pi/9$ down to the $1\pi/9$ -mode)?
- Cell-to-cell effects while the beam is passing?

Summary & Questions

Questions to be answered by simulation experts

3. Exploit additional passband modes ($8\pi/9 \dots 1\pi/9$)

Goal: Extract additional information from the passband modes.

- Assumption of mode excitation by beam or drive if energy gain stays constant
- Can we get additional information's from the passband modes?
 - Resonance frequency of pi-mode?
 - Detuning?
 - Beam phase?

4. Mechanical cavity model

Goal: Find an appropriate mechanical cavity model including mechanical couplings.

- Piezo excitation/correction to detuning of π-mode?
- Cavity-to-cavity couplings (mechanical) in spatial distribution?

Thank you

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Sven Pfeiffer DESY - MSK sven.pfeiffer@desy.de (+49)40 8998 - 2744

Backup Slides

System Identification

... using grey-box modelling

- Parameter identification within minutes
- Linear time-invariant (LTI) model:
 - Static gain, bandwidth, passband modes

RF stability (rms)	RF-gun	ACC1	ACC39	ACC23	ACC45	ACC67
Ampl. Intra pulse [%]	0.0044	0.0057	0.011	0.0053	0.0052	0.0069
Ampl. pulse to pulse [%]	0.0006	0.0013	0.0025	0.0024	0.0007	0.0039
Phase Intra pulse [deg]	0.011	0.0065	0.0087	0.00484	0.005	0.0076
Phase pulse to pulse [deg]	0.002	0.003	0.002	0.002	0.0022	0.004

Table: In-loop regulation for 600 consecutive RF pulses

DESY. | Precision Control of SRF Cavities | Sven Pfeiffer, 15.11.2018

* at 100kHz BW (BW RF-gun ~ 53 kHz) ** at 9 MHz

Passband mode excitation

Maximum contribution to first two passhand modes

- 8pi/9-mode
 - -71dB * 0.007 = 2e-6 (generator)
 - -20dB * 0.011 = 1.1e-3 (beam)
- 7pi/9-mode
 - -83dB * 0.016 = 1e-6 (generator)
 - -40 dB * 0.015 = 1.5e-4 (beam)

Beam driven; XFEL: 4.6e6, 0.25nC, 4.5 MHz, ~4% RF drive by beam

Cavity mode contribution to the beam

... started MATLAB simulation longer time ago

- Mode contribution is dependent of initial RF field phase seen by the beam
 - Important for multi bunch operation
- Adding e.g. passband mode contributions driven by generator
 - Modes phase w.r.t. π-mode unknown

...with a relativistic beam, the average accelerating field vanishes for all modes, except of course for the π -mode. ... The induced bunch-by-bunch energy spread is with max. $3 \cdot 10^{-6}$ very small...

Cavity mode contribution to the beam

... started MATLAB simulation longer time ago

- Mode contribution is dependent of initial RF field phase seen by the beam
 - Important for multi bunch operation
- Adding e.g. passband mode contributions at 0 deg. lead to 5 % energy change
 - Modes are not phase stable and change over time

DESY. | Precision Control of SRF Cavities | Sven Pfeiffer, 15.11.2018