Code Development for Large-Scale Eigenvalue Calculations

W. Ackermann, H. De Gersem Institut Theorie Elektromagnetischer Felder, Technische Universität Darmstadt

 ∇

Outline

- Motivation
- Computational model
 - Numerical problem formulation
- Numerical examples
 - Spherical cavity (lossless / lossy)

Properties of the system matrix

- 1.3 GHz structure (single cavity)

Evaluation of promising preconditioner and related linear solvers

Summary / Outlook

Outline

Motivation

- Computational model
 - Numerical problem formulation
- Numerical examples
 - Spherical cavity (lossless / lossy)
 - Properties of the system matrix
 - 1.3 GHz structure (single cavity)

Evaluation of promising preconditioner and related linear solvers

Summary / Outlook

Motivation

Outline

- Motivation
- Computational model
 - Numerical problem formulation
- Numerical examples
 - Spherical cavity (lossless / lossy) Properties of the system matrix
 - 1.3 GHz structure (single cavity)

Evaluation of promising preconditioner and related linear solvers

Summary / Outlook

- Numerical Eigenanalysis for Resonant Structures
 - Algebraic problem definition

 $A(\lambda) \, x = \lambda \, B \, x$

- Generally available solver types

- Krylov-type solver methods with linearization
- Rational Krylov-type methods with linearization
- MOR-type solver methods
- Contour integral methods
- Jacobi-Davidson with fixed-point iteration

Jacobi-Davidson method

$$M = A - \lambda_{\tau} B$$

- Important properties
 - Direct solution difficult because of dense matrix in correction equation.
 - Iterative solution not immediately applicable because vectors $\Delta \vec{x}$ with $\Delta \vec{x} \in R\{(V_B)_{\perp}\}$ are not mapped back onto $R\{(V_B)_{\perp}\}$ again.
- Preconditioning
 - The JD preconditioner

$$PC = \{I - M^{-1}V_B[(M^{-1}V_B)^T V_B]^{-1}V_B^T\}M^{-1}$$

= $M^{-1} - M^{-1}V_B[(M^{-1}V_B)^T V_B]^{-1}V_B^T M^{-1}$

retains the property $\Delta \vec{x} \in R\{(V_B)_{\perp}\}$ for any preconditioner M^{-1} .

Simplest case:
$$M^{-1} = I \quad \hookrightarrow \quad PC = I - VV_B^T = P$$

- Numerical formulation
 - Implementation

$$a_{ij} = \iiint_{\Omega} 1/\mu_{\mathsf{r}} \operatorname{curl} \vec{w}_i \cdot \operatorname{curl} \vec{w}_j \, \mathrm{d}\Omega$$

$$b_{ij} = \iiint_{\Omega} \varepsilon_{\mathsf{r}} \ \vec{w}_i \cdot \vec{w}_j \ \mathsf{d}\Omega$$

Mathematica

Edge basis elements

🛛 🛛 🖉 🖉

```
(* Element matrix calculation *)
fktA2[i_Integer, j_Integer] :=
   Integrate[(curlW[i].curlW[j]) * jacobi,
      {u1, 0, 1}, {u2, 0, 1 - u1}, {u3, 0, 1 - u1 - u2}];
matA2 = Array[fktA2, {nEdges, nEdges}];
TableForm[Flatten[matA2]]
```

🔻 🛛 Matrix B

(* Element matrix calculation *)
fktB2[i_Integer, j_Integer] :=
 Integrate[(W[i].W[j]) * jacobi, {u1, 0, 1},
 {u2, 0, 1 - u1}, {u3, 0, 1 - u1 - u2}];
matB2 = Array[fktB2, {nEdges, nEdges}];
TableForm[Flatten[matB2]]

contribution of element-matrices ready availabe

- Numerical formulation
 - Function definition

FEM06: lowest order approximation (edge elements, Nédélec)

	Space	Basis functions	Assoc.
scalar	$ ilde{\mathcal{V}}_1$	ϕ_i	$\{i\}$
	$ ilde{\mathcal{V}}_2$	$\phi_i\phi_j$	$\{ij\}$
	$\tilde{\mathcal{V}}_3$	$\phi_i \phi_j (\phi_i - \phi_j),$	$\{ij\}$
		$\phi_i\phi_j\phi_k$	$\{ijk\}$
	$ ilde{\mathcal{A}}_1$	$\phi_i abla \phi_j - \phi_j abla \phi_i$	$\{ij\}$
	$ ilde{\mathcal{A}}_2$	$3\phi_j\phi_k\nabla\phi_i-\nabla(\phi_i\phi_j\phi_k),$	$\{ijk\}$
		$3\phi_k\phi_i abla\phi_j- abla(\phi_i\phi_j\phi_k)$	$\{ijk\}$
	$ ilde{\mathcal{A}}_3$	$4\phi_j\phi_k(\phi_j-\phi_k) abla\phi_i- abla(\phi_j\phi_k(\phi_j-\phi_k)),$	$\{ijk\}$
		$4\phi_k\phi_i(\phi_k-\phi_i) abla\phi_j- abla(\phi_j\phi_k\phi_i(\phi_k-\phi_i)),$	$\{ijk\}$
		$4\phi_i\phi_j(\phi_i-\phi_j) abla\phi_k- abla(\phi_k\phi_i\phi_j(\phi_i-\phi_j)),$	$\{ijk\}$
		$4\phi_j\phi_k\phi_l abla\phi_i- abla(\phi_i\phi_j\phi_k\phi_l),$	$\{ijkl\}$
		$4\phi_k\phi_l\phi_i abla\phi_j- abla(\phi_i\phi_j\phi_k\phi_l),$	${ijkl}$
		$4\phi_l\phi_i\phi_j abla\phi_k- abla(\phi_i\phi_j\phi_k\phi_l)$	$\{ijkl\}$

FEM12: higher order approximation

Numerical formulation

- Function definition

	Space	Basis functions	Assoc.
scalar	$ ilde{\mathcal{V}}_1$	ϕ_i	$\{i\}$
	$ ilde{\mathcal{V}}_2$	$\phi_i\phi_j$	$\{ij\}$
	$\tilde{\mathcal{V}}_3$	$\phi_i\phi_j(\phi_i-\phi_j),$	$\{ij\}$
		$\phi_i\phi_j\phi_k$	${ijk}$
vector	$ ilde{\mathcal{A}}_1$	$\phi_i abla \phi_j - \phi_j abla \phi_i$	$\{ij\}$
	\mathcal{A}_2	$3\phi_j\phi_k\nabla\phi_i-\nabla(\phi_i\phi_j\phi_k),$	$\{ijk\}$
		$3\phi_k\phi_i abla\phi_j- abla(\phi_i\phi_j\phi_k)$	$\{ijk\}$
	$ ilde{\mathcal{A}}_3$	$4\phi_j\phi_k(\phi_j-\phi_k) abla\phi_i- abla(\phi_i\phi_j\phi_k(\phi_j-\phi_k)),$	$\{ijk\}$
		$4\phi_k\phi_i(\phi_k-\phi_i) abla\phi_j- abla(\phi_j\phi_k\phi_i(\phi_k-\phi_i)),$	$\{ijk\}$
		$4\phi_i\phi_j(\phi_i-\phi_j) abla\phi_k- abla(\phi_k\phi_i\phi_j(\phi_i-\phi_j)),$	$\{ijk\}$
		$4\phi_j\phi_k\phi_l abla\phi_i- abla(\phi_i\phi_j\phi_k\phi_l),$	$\{ijkl\}$
		$4\phi_k\phi_l\phi_i abla\phi_j- abla(\phi_i\phi_j\phi_k\phi_l),$	$\{ijkl\}$
↓ I		$4\phi_l\phi_i\phi_j abla\phi_k- abla(\phi_i\phi_j\phi_k\phi_l)$	$\{ijkl\}$

s for Tetrahedral Meshes, on MICROWAVE THEORY AND TECHNIQUES, RY 2006 curl)-Conforming Hierarchical JANUARY of H(TIONS ⊃är Ingelström ⁻unction Ъ, Ñ 54, NO. A New C, Basi VOL.

FEM20: higher order approximation

Numerical formulation

- Function definition

	Space	Basis functions	Assoc.
alar	$ ilde{\mathcal{V}}_1$	ϕ_i	$\{i\}$
	$ ilde{\mathcal{V}}_2$	$\phi_i\phi_j$	$\{ij\}$
S S C S	$\tilde{\mathcal{V}}_3$	$\phi_i\phi_j(\phi_i-\phi_j),$	$\{ij\}$
		$\phi_i\phi_j\phi_k$	$\{ijk\}$
Vector	$ ilde{\mathcal{A}}_1$	$\phi_i abla \phi_j - \phi_j abla \phi_i$	$\{ij\}$
	$ ilde{\mathcal{A}}_2$	$3\phi_j\phi_k abla\phi_i - abla(\phi_i\phi_j\phi_k),$	$\{ijk\}$
		$3\phi_k\phi_i abla\phi_j- abla(\phi_i\phi_j\phi_k)$	$\{ijk\}$
	$ ilde{\mathcal{A}}_3$	$4\phi_j\phi_k(\phi_j-\phi_k)\nabla\phi_i-\nabla(\phi_i\phi_j\phi_k(\phi_j-\phi_k)),$	$\{ijk\}$
		$4\phi_k\phi_i(\phi_k - \phi_i)\nabla\phi_j - \nabla(\phi_j\phi_k\phi_i(\phi_k - \phi_i)), \\ 4\phi_i\phi_j(\phi_i - \phi_j)\nabla\phi_k - \nabla(\phi_k\phi_i\phi_j(\phi_i - \phi_j)),$	$\{ijk\}$ $\{ijk\}$
		$4\phi_j\phi_k\phi_l\nabla\phi_i-\nabla(\phi_i\phi_j\phi_k\phi_l),$	$\{ijkl\}$
		$4\phi_k\phi_l\phi_i abla\phi_j- abla(\phi_i\phi_j\phi_k\phi_l),$	$\{ijkl\}$
Ļ		$4\phi_l\phi_i\phi_j abla\phi_k- abla(\phi_i\phi_j\phi_k\phi_l)$	$\{ijkl\}$

s for Tetrahedral Meshes, on MICROWAVE THEORY AND TECHNIQUES, curl)-Conforming Hierarchical 2006 JANUARY of H(**TIONS** ⊃är Ingelström ⁻unction Ъ, Ñ 54, NO. A New C, Basi VOL.

Outline

- Motivation
- Computational model
 - Numerical problem formulation
- Numerical examples
 - Spherical cavity (lossless / lossy)
 - Properties of the system matrix
 - 1.3 GHz structure (single cavity)

Evaluation of promising preconditioner and related linear solvers

Summary / Outlook

Spherical Resonators

Spherical Resonators

- Properties of the Matrix Pencil
 - Eigenvalue distribution

Properties of the Matrix Pencil

 $A \, x = \lambda \, B \, x$

- Population pattern for the loss-less case

 Properties of the System Matrix $(A - \lambda_\tau B) x = r$ - Population pattern for the loss-less case M100 132 M₁₁ indefinite Matrix M 50 **Eigenvalue distribution** 1.0 0.5 0.0 100 100 -0.5 cond = 341.8-1.0132 100 0.5 50 132 -0.50.0 1.5 1.0

 $(A - \lambda_\tau B) x = r$

M

- Properties of the System Matrix
 - Population pattern for the loss-less case

 $(A - \lambda_\tau B) x = r$

M

- Properties of the System Matrix
 - Population pattern for the loss-less case

∑×

 $(A - \lambda_\tau B) x = r$

M

- Properties of the System Matrix
 - Population pattern for the loss-less case

 $(A - \lambda_\tau B) x = r$

M

- Properties of the System Matrix
 - Population pattern for the loss-less case

 $(A - \lambda_\tau B) x = r$

M

- Properties of the System Matrix
 - Population pattern for the loss-less case

 Properties of the System Matrix $(A - \lambda_\tau B) x = r$ - Population pattern for the loss-less case M100 132 M indefinite Matrix M 50 Eigenvalue distribution 1.0 0.5 0.0 100 100 -0.5 cond = 159.5-1.0132 50 100 -0.5 132 0.0 0.5 1.0 1.5 2.0

Ž×

- Properties of the System Matrix
 - Population pattern for the loss-less case

- Properties of the System Matrix
 - Population pattern for the loss-less case

Spherical Resonators

- Properties of the Matrix Pencil
 - Eigenvalue distribution

- Properties of the Matrix Pencil
 - Eigenvalue distribution

Properties of the Matrix Pencil

 $A \, x = \lambda \, B \, x$

- Population pattern for the lossy case

- Properties of the System Matrix
 - Population pattern for the lossy case

- Properties of the System Matrix
 - Population pattern for the lossy case

- Properties of the System Matrix
 - Population pattern for the lossy case

 $(\underbrace{A - \lambda_{\tau} B}_{M}) x = r$

- Properties of the System Matrix
 - Population pattern for the lossy case

 $(\underbrace{A - \lambda_{\tau} B}_{M}) x = r$

- Properties of the System Matrix
 - Population pattern for the lossy case

- Properties of the System Matrix
 - Population pattern for the lossy case

- Properties of the System Matrix
 - Population pattern for the lossy case

- Selection of an Efficient Preconditioner
 - Two-Level Approach for higher-order field approximation

System matrix $\begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ Preconditioner (left)

- Selection of Available Preconditioner (PETSc)
 - Block Jacobi

 $\begin{pmatrix} M_{11}^{-1} & 0\\ 0 & M_{22}^{-1} \end{pmatrix}$

- Block Gauss-Seidel

$$\begin{pmatrix} I & 0 \\ 0 & M_{22}^{-1} \end{pmatrix} \begin{pmatrix} I & 0 \\ -A_{21} & I \end{pmatrix} \begin{pmatrix} M_{11}^{-1} & 0 \\ 0 & I \end{pmatrix}$$

- Symmetric block Gauss-Seidel

$$\begin{pmatrix} M_{11}^{-1} & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} I & -A_{12} \\ 0 & I \end{pmatrix} \begin{pmatrix} M_{11} & 0 \\ 0 & M_{22}^{-1} \end{pmatrix} \begin{pmatrix} I & 0 \\ -A_{21} & I \end{pmatrix} \begin{pmatrix} M_{11}^{-1} & 0 \\ 0 & I \end{pmatrix}$$

Outline

- Motivation
- Computational model
 - Numerical problem formulation

Numerical examples

- Spherical cavity (lossless / lossy)
 Properties of the system matrix
- 1.3 GHz structure (single cavity)

Evaluation of promising preconditioner and related linear solvers

Summary / Outlook

- Eigenanalysis of a single TESLA Cavity
 - Concentration on the fundamental mode

- JD Eigenvalue Solver, subspace expansion
 - SuperLU (direct solver for large sparse systems of linear equations)
 - Symmetric block Gauss-Seidel (two level strategy)
 - M₁₁: Direct solver "Super LU" as preconditioner
 - M₂₂: Diagonal preconditioner

- Eigenanalysis of a single TESLA Cavity
 - Jacobi-Davidson Eigenvalue-Solver Statistics

- Eigenanalysis of a single TESLA Cavity
 - Jacobi-Davidson Eigenvalue-Solver Statistics

- Eigenanalysis of a single TESLA Cavity
 - Jacobi-Davidson Eigenvalue-Solver Statistics

- Eigenanalysis of a single TESLA Cavity
 - Jacobi-Davidson Eigenvalue-Solver Statistics

Outline

- Motivation
- Computational model
 - Numerical problem formulation
- Numerical examples
 - Spherical cavity (lossless / lossy)
 - Properties of the system matrix
 - 1.3 GHz structure (single cavity)

Evaluation of promising preconditioner and related linear solvers

Summary / Outlook

Summary / Outlook

- Summary
 - Implementation of a block preconditioner into a nonlinear Jacobi-Davidson eigenvalue solver (PETSc index sets)
 - Block structure is motivated by the hierarchical setup of the underlying FEM basis functions
 - Flexible selection of individual block solver from the command line without recompiling the code (PETSc feature)
 - Usage of block solver can reduce total memory consumption
- Outlook
 - Implementation of periodic boundary condition started

