S2E simulations for proof-of-principle experiment on THz SASE FEL at PITZ

M. Krasilnikov for PITHz team

DESY-TEMF-Meeting, 15th of November 2018, DESY Hamburg,

Photo Injector Test facility at DESY, Zeuthen site (PITZ)

IR/THz SASE source for pump-probe experiments @E-XFEL

PITZ-like accelerator can enable high power, tunable, synchronized IR/THz radiation

DESY. | Mikhail Krasilnikov, S2E simulations for proof-of-principle experiment on THz SASE FEL at PITZ | DESY-TEMF-Meeting, 15.11.2018, DESY, Hamburg

SASE FEL based on PITZ accelerator and LCLS-I undulators

LCLS-I undulators (available on loan from SLAC) \rightarrow under study and negotiations

Properties	Details
Туре	planar hybrid (NdFeB)
K-value	3.49 (3.585)
Support diameter / length	30 cm / 3.4 m
Vacuum chamber size	11 mm x 5 mm
Period length	30 mm
Periods / a module	113 periods

Reference: LCLS conceptual design report, SLAC-0593, 2002.

Some Properties of the LCLS-I undulator

Preliminary conclusions on LCLS-I undulators at PITZ:

- Not such extremely high performance as for the APPLE-II, but is clearly proper for the proof-of-principle experiment!
- 4 nC electron beam transport through the vacuum chamber needs efforts, but seems to be feasible.

$\lambda_{rad} \sim 100 \mu m \rightarrow \langle Pz \rangle = 16.7 MeV/c$

DESY. | Mikhail Krasilnikov, S2E simulations for proof-of-principle experiment on THz SASE FEL at PITZ | DESY-TEMF-Meeting, 15.11.2018, DESY, Hamburg

DESY.

Start-to-end simulations for proof-of-principle experiment at PITZ

PITZ main tunnel and tunnel annex for the LCLS-I undulator installation

S2E simulations: from photocathode \rightarrow undulator \rightarrow THz SASE FEL

Main challenges:

- 4 nC (200A) x 16.7 MeV/c \rightarrow SC dominated beam
- ~30 m transport (incl. 1.5 m wall) \rightarrow LCLS-I undulator in the tunnel annex
- 3D field of the undulator field
- Matching into the undulator (narrow vacuum chamber issue)

Tools:

- ASTRA
- SC-Optimizer
- GENESIS 1.3

Beam Dynamics Simulation Setup ASTRA

Page 6

Gun, solenoid, booster parameters

DESY. | Mikhail Krasilnikov, S2E simulations for proof-of-principle experiment on THz SASE FEL at PITZ | DESY-TEMF-Meeting, 15.11.2018, DESY, Hamburg

Beam at EMSY1 – "ready" for transport

Z=5.277m from the cathode

DESY. | Mikhail Krasilnikov, S2E simulations for proof-of-principle experiment on THz SASE FEL at PITZ | DESY-TEMF-Meeting, 15.11.2018, DESY, Hamburg

PITZ Beam from the cathode \rightarrow tunnel wall

ASTRA input \rightarrow SC-Optimizer \rightarrow check with ASTRA

DESY. | Mikhail Krasilnikov, S2E simulations for proof-of-principle experiment on THz SASE FEL at PITZ | DESY-TEMF-Meeting, 15.11.2018, DESY, Hamburg

Page 8 P

LCLS-I Undulator field

DESY. | Mikhail Krasilnikov, S2E simulations for proof-of-principle experiment on THz SASE FEL at PITZ | DESY-TEMF-Meeting, 15.11.2018, DESY, Hamburg

LCLS-I Undulator field

Fourier Analysis

Performing Fourier transformation for $-\frac{L}{2} \le z \le \frac{L}{2}$, where $L = N_U \lambda_U$ is the undulator length: $B_y(x = 0, y = 0, z) = \sum_{n=0}^{\infty} \left\{ a_n \cos\left(\frac{2\pi nz}{N_U \lambda_U}\right) + b_n \sin\left(\frac{2\pi nz}{N_U \lambda_U}\right) \right\}$, where $a_n = \frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} B_y(x = 0, y = 0, z) \cos\left(\frac{2\pi nz}{N_U \lambda_U}\right) dz$, $a_0 = \frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} B_y(x = 0, y = 0, z) dz$, $b_n = \frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} B_y(x = 0, y = 0, z) \sin\left(\frac{2\pi nz}{N_U \lambda_U}\right) dz$.

LCLS-I Undulator field

3D field map generation

Vertical and longitudinal components of undulator magnetic field:

 $B_{y}(x, y, z) = \sum_{n=1}^{N_{h} \cdot N_{U}} [\{\tilde{a}_{n} \cos(k_{n}z) + \tilde{b}_{n} \sin(k_{n}z)\} \cdot \cosh(k_{n}y)],$ $B_{z}(x, y, z) = \sum_{n=1}^{N_{h} \cdot N_{U}} [\{-\tilde{a}_{n} \sin(k_{n}z) + \tilde{b}_{n} \cos(k_{n}z)\} \cdot \sinh(k_{n}y)],$

Used as external field map for ASTRA (static magnetic cavity)

and for CST Trk/PIC solver

On-axis particle trajectory in the undulator

Reference particle: ASTRA and CST tracking

DESY. | Mikhail Krasilnikov, S2E simulations for proof-of-principle experiment on THz SASE FEL at PITZ | DESY-TEMF-Meeting, 15.11.2018, DESY, Hamburg

Beam matching into the undulator

ASTRA simulations with space charge and 3D undulator field map

• "Ideal" (Gaussian-FT) beam

DESY. | Mikhail Krasilnikov, S2E simulations for proof-of-principle experiment on THz SASE FEL at PITZ | DESY-TEMF-Meeting, 15.11.2018, DESY, Hamburg

New transport / matching

Further "through the wall" + prepare for asymmetric matching into the undulator

DESY. | Mikhail Krasilnikov, S2E simulations for proof-of-principle experiment on THz SASE FEL at PITZ | DESY-TEMF-Meeting, 15.11.2018, DESY, Hamburg

Electron beam transport for LCLS-I undulator option at PITZ

Matching into the undulator \rightarrow beam size

NB1: Space charge model is not fully correct for the undulator (dipole field)

Beam at undulator entrance

ASTRA monitors at z=27.15m → input for GENESIS 1.3 simulations

GENESIS 1.3 Simulations

ASTRA at 27.15m + tuning (scaling) → GENESIS1.3 Simulations

DESY. | Mikhail Krasilnikov, S2E simulations for proof-of-principle experiment on THz SASE FEL at PITZ | DESY-TEMF-Meeting, 15.11.2018, DESY, Hamburg

Conclusions and outlook

Star-to-End simulations for the proof-of-principle experiment for SASE THz FEL at PITZ using LCLS-I undulator

PITZ Setup for THz SASE FEL:

- Gun: 60MV/m, 0deg
- Photocathode laser: Ø5mm, 21.5ps FWHM, 4nC
- CDS booster setup: 12.6MV/m, -24deg → 16.7MeV/c + min dE@~undulator
- Main solenoid: MaxB(1)=-0.21285T (~365A) $\rightarrow \epsilon_{xv}$ (EMSY1)~4 mm mrad
- Transport: 3 quad. triplets \rightarrow transport through the tunnel wall (1.5m)
- Transport: +1 quad triplet to match into undulator
- Undulator field:
 - Based on measured profile $B_v(z,0,0)$
 - Treated (improved) profile to minimize field integrals
 - 3D field map reconstructed \rightarrow CST and ASTRA
- Tracking beam through the undulator:
 - On-axis reference particle: CST Trk $\leftarrow \rightarrow$ ASTRA with 3D field map
 - Off-axis reference particle in ASTRA to find initial guess for matching
 - 4nC beam by ASTRA (with space charge*) \rightarrow matching found
- GENESIS simulations with s2e electron beam \rightarrow ~440uJ (up to 600uJ by β_{y} - α_{y} -tuning) at λ_{rad} ~100um

- Refine (improve) preliminary optimum solution:
 - Realistic PC laser parameters Ø3-4mm, other temporal profiles, core+halo (using experimental data)
 - Other imperfections (photoemission, asymmetry)
 - Flat beam option?
- Transport with less quads?
- Collimator?
- Scale / re-optimize setup for λ_{rad} =50-60 μ m
- Undulator error, tolerances
 Implement horizontal gradient
 - "Full physics" FEL code?
 - Waveguide effects
 - Space charge effects
 - Wakefields?
 - Tolerances on the input beam (imperfections)
 - ...

Planned installation of LCLS-I undulators in PITZ tunnel annex

To use for proof-of-principle experiments at PITZ

"PITHz collaboration":

P. Boonpornprasert, X.-K. Li, H. Shaker, F. Stephan, DESY, Zeuthen, Germany E.A. Schneidmiller, M.V. Yurkov, DESY, Hamburg, Germany H.-D. Nuhn, SLAC, Menlo Park, California, USA

Special thanks:

V. Balandin, N. Golubeva, DESY, Hamburg, Germany

SASE FEL with LCLS-I Undulator at PITZ

Estimations of parameters (theory) for $\lambda_{rad} \approx 100 \mu m$

		FEL ra	adiation		EEL dimo	FEL dimonsionloss	
		parameter	value		FEL UITIE	130111633	
e-be	am	$\lambda_{ m rad}$	105µm		parameter	value	
parameter	value	0	0.43	<i>K</i> ²	D	0.052	$_{P} = 2\Gamma \sigma_{y}^{2} \omega$
Energy, E_0	16.65 MeV	Q	0.43	$Q = \frac{1}{4 + 2K^2}$	В	0.052	$B = \frac{1}{c}$
γ	32.6	A_{JJ}	0.74 A	$J_{JJ} = J_o(Q) - J_1(Q)$	arOmega	5.7	$\Omega = \Gamma R_{eff}^2 \omega / c$
$\sigma_{\!E}$	70 keV	Θ_l	0.11	$\theta_l = K/\gamma$			$v_r^2 \Gamma$
< \sigma_x >	10.51 mm	γ_{i}	12.0	$1 1 \theta_l^2$	ρ	0.013	$\rho = \frac{r_l r}{\omega/c}$
< \sigma_{y} >	0.2 mm	• 1		$\frac{1}{\gamma_l^2} = \frac{1}{\gamma_l^2} + \frac{1}{2}$	6 2		$\widehat{4}c^2$
charge	4 nC	Γ	5.4 m ⁻¹	$I \qquad \Lambda^2 \qquad \omega^2 \qquad \Omega^2$	Λ_p^2	0.41	$\Lambda_p^2 = \frac{1}{\left[\theta_1 \sigma_n \omega\right]^2}$
I _{peak}	190 A	\varGamma^1	0.19 m	$\Gamma = \left \frac{I_{peak}A_{JJ}\omega \ o_l}{2I_A c^2 \gamma_l^2 \gamma} \right $	$\widehat{\Lambda}^2_{-}$	0 11	σ_r^2
€ _{n,x,y}	4 mm mrad		Undulator	$\sqrt{2A}$	T T	0.11	$\widehat{\Lambda}_T^2 = \frac{\sigma_E}{[F, \rho]^2}$
β_x	8 m	par	parameter				
β_y	0.3 m		λ.,		Reference: S	aldin E.L., Schnei	dmiller E.A., Yurkov I
			K		"The physics of free electron lasers" - Berlin et al.: Springer 2000 pp 41-48 258 280 415-416		
		Vacuum cha	mber W / H / R _{eff}	11 / 5 / 4.2 mm	opinigoi, 200	o. pp. 11 10, 200,	200, 110 110

DESY. | Mikhail Krasilnikov, S2E simulations for proof-of-principle experiment on THz SASE FEL at PITZ | DESY-TEMF-Meeting, 15.11.2018, DESY, Hamburg

