REPTIL - Relativistic 3D Space Charge Particle Tracking Using the Fast Multipole Method

TECHNISCHE UNIVERSITÄT DARMSTADT

<u>S. Schmid</u>, E. Gjonaj, and H. De Gersem Institut für Theorie Elektromagnetischer Felder, TU Darmstadt

DESY & TEMF Meeting - Winter 2018

15.11.2018, DESY, Hamburg

Structure

- I. Fast Multipole Methods
- II. Tree Construction
- **III.** Numerical Convergence and Performance
 - i. Particle Based Fast Multipole Method
 - ii. Mesh Based Fast Multipole Method
- IV. Simulation of the PITZ Injector
- V. Outlook

Fast Multipole Methods The Concept

Problem:

Efficient way to compute many-body interaction needed

 \rightarrow Reduce complexity to less than $O(N^2)$

Fast Multipole Methods The Concept

Solution:

Approximation of force for distant particles ($\theta \le \theta_{max}$) Direct computation of force for near particles

r | Steffen Schmid | 5

Fast Multipole Methods 3. Evaluate Interaction: Tree Traversal

- 1. Compute multipole expansion of particles contained in each leaf box.
- 2. Express multipoles in parent node. Sum contributions from child nodes.
- 3. Translate approximation of distant distribution to local parent node.
- 4. Express multipole expansion in the local coordinates of the child nodes.
- 5. Evaluate $F_{distant}$ and F_{near} for each particle in the leaf.

M2L M2M 2F P2F

(Plot based on: R. Yokota, ExaFMM User's Manual, 2011)

Tree Construction Spatial Sectioning Methods

Centered 8-Section:

Shifted 8-Section:

Adaptive 2^N-Section:

Common center

Isotropic refinement

Cubical boxes

Tree shifted w.r.t bunch

Isotropic refinement

Cubical boxes

Root box reshapes bunch

Non-isotropic refinement

Approx. cubical boxes

Tree Construction Centered 8-Section for Prolate Bunch

Tree Construction Adaptive 2^N-Section for Prolate Bunch

No empty boxes

Good filling ratio ~43% (#particles/box)

Bunch shape contained in tree structure

Tree Construction Speedup and Error of Sectioning Methods

Speedup: $S \coloneqq \frac{t_{PPM}}{t_{FMM}}$ Error: $\delta \coloneqq \frac{ E_{PPM} - E_{FMM} }{ E_{PPM} }$			
	S = 1.9 $\delta \sim 10^{-7}$	S = 1.3 $\delta \sim 10^{-7}$	S = 2.6 $\delta \sim 10^{-7}$
	$\begin{array}{l} S=2.4\\ \delta\sim 10^{-7} \end{array}$	$\begin{array}{l} S=1.4\\ \delta\sim 10^{-7} \end{array}$	S = 4.5 $\delta \sim 10^{-8}$
	$egin{array}{llllllllllllllllllllllllllllllllllll$	S = 1.4 $\delta \sim 10^{-8}$	S = 5.4 $\delta \sim 10^{-8}$

Tree Construction Computation of Mirror Charge Interaction

Convergence and Performance Particle FMM: Gaussian Bunch

Convergence and Performance Particle FMM: Admissibility Parameter θ_{max}

 $\theta_{max} = 0.6$

 $\Rightarrow \sigma(E_{\gamma}) \sim 10^5 V/m$

TECHNISCHE UNIVERSITÄT

DARMSTADT

Convergence and Performance Particle FMM: Multipole Expansion Order *l_{max}*

Convergence and Performance Particle FMM: Numerical Convergence Study

Speedup vs. Multipole Order:

Exponential convergence in l_{max} Adds comp. cost of $O(l_{max}^2)$ to $O(l_{max}^4)$

Speedup vs. Admissibility Criterion:

Ratio of direct particle-particle computations increases with $\frac{1}{\theta_{max}}$

 \rightarrow Parameters l_{max} , θ_{max} trade off speedup against accuracy

Convergence and Performance Mesh FMM: Charge Deposition & Tree Structure

0.40.40.4 y position / mm $_{\rm 0.}^{\rm 0.1}$ ($_{\rm 0.5}^{\rm 0.1}$ y position / mm 0 mm / mm / mm $^{-0.5}$ -0.4-0.4-0.4-0.4-0.20.20.4-0.4 -0.20 0.2 0.4-0.4x position / mm x position / mm

Particle FMM

Mesh FMM

Reduced Mesh FMM

Convergence and Performance Mesh FMM: Smoothening Single Particle Noise

 $\Delta_{\vec{x}} = 2.5 \cdot 10^{-5} \text{ m}$ $\Rightarrow \sigma(E_x) \sim 10^6 V/m$ $\Delta_{\vec{x}} = 2.5 \cdot 10^{-6} \text{ m}$ $\Rightarrow \sigma(E_x) \sim 10^6 \text{ V/m}$

TECHNISCHE UNIVERSITÄT

DARMSTADT

Convergence and Performance Mesh FMM: Numerical Convergence Study

 \rightarrow Smoothening of single particle noise if $\Delta_{near} \ll \Delta_{x_i} \ll \sigma_{x_i}$

Convergence and Performance Performance Studies: PPM, FMM & Mesh FMM

Simulation of the PITZ Injector Photoemission w/o Space Charge Limitation

3

2.5

 $\mathbf{2}$

1.5

1

0.5

0

0

emittance $\epsilon_t \ / \ mm mrad$

transv.

#Particles: $N = 5000k$	Speedup: $S \coloneqq t_{FMM} / t$	Deviation: $\delta \coloneqq \epsilon_t - \epsilon_t^{FMM} $
Astra 2D	× 11	$\sim 10^{-1}$ mm mrad
Mesh FMM ($\Delta_{\vec{x}} \sim 10^{-5} \text{ m}$)	× 6	$\sim 10^{-2}$ mm mrad
Reduced mesh FMM	× 12	$\sim 10^{-2}$ mm mrad

TECHNISCHE UNIVERSITÄT

DARMSTADT

Simulation of the PITZ Injector 3D Space Charge Particle Tracking

N = 500k

Astra 3D

FMM

Single particle noise increases ϵ_t of FMM/PPM w.r.t. Astra 3D

 \rightarrow <u>Ongoing work:</u> Investigate smoothening using mesh FMM (Emission with Astra 2D, 3D tracking started at z = 10 cm)

 $S \coloneqq t_{PPM} / t$

x 9

 $\times 27$

Outlook Agenda for the REPTIL FMM Code

Stats Quo:

- + Satisfactory performance results for REPTIL FMM simulations
- Non-optimized code segments slow down computation

Ongoing and Future Code Development:

- Optimization of REPTIL
- Implementation of 2D FMM kernel
- Investigation of relativistic interaction kernels
 <u>Parallelized space charge tracking code for accelerator applications</u>
- Step by step towards self consistent photo emission models
 <u>Simulation of high current particle injectors</u>

