Convergence Study for FEM- and FIT-Based Eigenvalue Solvers Applied to a TESLA 1.3 GHz Test Structure

W. Ackermann, H. De Gersem, W. F. O. Müller Institut Theorie Elektromagnetischer Felder, Technische Universität Darmstadt

- Motivation
- Computational Model
 - FIT on HEX and FEM on TET
 - Cem3D parallel implementation of FIT on HEX
- Simulation Results
 - CST implementation for the FIT and FEM solver
 - CST and Cem3D Implementation for the FEM Solver
 - CST and Cem3D Implementation for the FIT Solver
- Summary / Outlook

Motivation

- Computational Model
 - FIT on HEX and FEM on TET
 - Cem3D parallel implementation of FIT on HEX
- Simulation Results
 - CST implementation for the FIT and FEM solver
 - CST and Cem3D Implementation for the FEM Solver
 - CST and Cem3D Implementation for the FIT Solver
- Summary / Outlook

Motivation

- Eigenanalysis of the TESLA Cavities
 - Frequencies below cutoff frequency of the beam tube

 $f_{\text{cut, } \emptyset=39\text{mm}} = 4.505 \text{ GHz}$ 1.3 GHz structure $f_{\text{cut, } \emptyset=40\text{mm}} = 4.392 \text{ GHz}$ 3.9 GHz structure

Motivation

- Eigenanalysis of the TESLA 3.9 GHz Cavities
 - Chain of cavities

- FLASH: 4 cavities per module + remaining beam line
- X-FEL: 8 cavities per module + remaining beam line

Select a proper numerical method to accurately solve this problem

- Motivation
- Computational Model
 - FIT on HEX and FEM on TET
 - Cem3D parallel implementation of FIT on HEX
- Simulation Results
 - CST implementation for the FIT and FEM solver
 - CST and Cem3D Implementation for the FEM Solver
 - CST and Cem3D Implementation for the FIT Solver
- Summary / Outlook

- Compare two Widespread Numerical Methods
 - FIT on hexahedral mesh

- FEM on tetrahedral mesh

- Compare two Widespread Numerical Methods
 - Convergence study based on a spherical resonator

- Compare two Widespread Numerical Methods
 - Survey of advantages/disadvantages

- Structured grid simple to evaluate
- Port faces aligned to the mesh
- Field components are decoupled
- Standard eigenvalue problem

FEM

- Unstructured grid nicely fits to geometry
- Arbitrary port face orientations
- Field components are coupled
- Generalized eigenvalue problem

- Eigenanalysis of a TESLA 3.9 GHz Test Structure
 - Simplifications suggested by DESY, URO, and TEMF
 - Single zero-loss cavity (ports replaced by PMC)
 - Short beam pipes

Side view

- Port faces aligned to HEX mesh
- Frequency range from 2 to 6 GHz

- Motivation
- Computational Model
 - FIT on HEX and FEM on TET
 - Cem3D parallel implementation of FIT on HEX
- Simulation Results
 - CST implementation for the FIT and FEM solver
 - CST and Cem3D Implementation for the FEM Solver
 - CST and Cem3D Implementation for the FIT Solver
- Summary / Outlook

- Canonical Indexing
 - Classical global ordering

• Structure of the Matrix C for the simple example

- Canonical Indexing
 - Classical local ordering

• Structure of the Matrix C for the simple example

Reduced Matrices

global canonical indexing

local canonical indexing

Layout of the System Matrix:

$$\mathbf{A} = \mathbf{M}_{\varepsilon}^{-1/2} \mathbf{C} \mathbf{M}_{\mu}^{-1} \mathbf{C} \mathbf{M}_{\varepsilon}^{-1/2}$$

Layout of the System Matrix:

$$\mathbf{A} = \mathbf{M}_{\varepsilon}^{-1/2} \mathbf{C} \mathbf{M}_{\mu}^{-1} \mathbf{C} \mathbf{M}_{\varepsilon}^{-1/2}$$

Example: N_p=27

Cem3D Implementation for the FIT Solver

- Parallel layout of the matrices and vectors using the PETSc library
- Renumbering of DOF
 - Enables to eliminate unnecessary memory allocations
 - Less zero eigenvalues
 - Length of the attached coaxial lines no longer significant for the memory consumption

Computational domain

- Motivation
- Computational Model
 - FIT on HEX and FEM on TET
 - Cem3D parallel implementation of FIT on HEX
- Simulation Results
 - CST implementation for the FIT and FEM solver
 - CST and Cem3D Implementation for the FEM Solver
 - CST and Cem3D Implementation for the FIT Solver
- Summary / Outlook

CST Implementation for the FIT and FEM Solver

CST Implementation for the FIT and FEM Solver

CST and Cem3D Implementation for the FEM Solver

CST and Cem3D Implementation for the FEM Solver

CST and Cem3D Implementation for the FIT Solver

CST and Cem3D Implementation for the FIT Solver

- Motivation
- Computational Model
 - FIT on HEX and FEM on TET
 - Cem3D parallel implementation of FIT on HEX
- Simulation Results
 - CST implementation for the FIT and FEM solver
 - CST and Cem3D Implementation for the FEM Solver
 - CST and Cem3D Implementation for the FIT Solver

Summary / Outlook

Summary / Outlook

- Summary:
 - Precise modeling of a 3.9 GHz TESLA test structure including the input and higher-order mode couplers
 - Concentration on a single zero-loss cavity with coordinatealigned port faces, ports are "closed" with PMC
 - Electromagnetic eigenmode analysis based on FIT on HEX and FEM on TET meshes
 - 100 Mio. Mesh cells for FIT on HEX not yet sufficient
- Outlook:
 - Investigate field-map data for the FIT and FEM approaches

