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Hamiltonian and Equation of Motion
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equation of motion with Lorentz force (E,B)

existence of Hamiltonian + Liouville’s theorem — conservation of phase space



Poisson Approach 1

Field calculation assumes collective motion with velocity Vv,
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either with use canonical variables, or we need the potential and its time derivative



Poisson Approach 2

Field calculation assumes collective motion with velocity
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this is done in usual E,B tracking codes



from our last meeting:
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tracking over long distance — growth of phase space volume



from our last meeting:

Q=le-9;

% LONGITUDINAL
pz=2.4e9;
8igz=24E-6;
emitz=0;

% HORIZONTAL
emitx=le-6/gam;
alphax= 0.2;
betax = 1.0;

% VERTICAL
emitvTemitx;
alphay= 1.0;
betay = 0.322;
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P2p, z component

P1 method, z component

P2 method, x component
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P2 method, z component

approach 1 is inaccurate
for longitudinal fields of
beams with high diver-
gence



the examples from our last meetings are high-energy examples

it was asked how the approaches behave for low energy, in
particular for a gun-calculation

— comparison (2013) with the benchmark case from 2010
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tracking with different types of self fields
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Poisson approach 2 = “VA method”
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longitudinal phase space
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my implementation of approach 1 is in good agreement with Astra
approach 2 vs. approach 1:

the bunch is longer,

energy is few keV lower,

energy spread is smaller



summary/conclusions

conventional Poisson approach “EB-method” does not conserve phase space

approach 2 needs canonical variables or time derivative of V

integration with canonical variables needs scalar & vector potential of external
fields and their spatial derivatives

in principle: time derivative of V can be calculated, one has to solve two
poisson problems:
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tracking at moderate and high energy behaves better with approach 2
(slice energy spread, divergent beams)

comparison with old gun-benchmark: small differences in projected emittance,
methods are anyhow not too precise (comparison with “full Maxwell”);
different bunch length/energy (unfortunately no “full Maxwell” data available)



Beam-Dynamics with 3D-Gun

Martin Dohlus

field-maps from Wolfgang Ackermann
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fo = 1.3 GHz

PITZ Gun = XFEL Gun
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Courtesy of DESY Zeuthen



Field-Maps from Wolfgang Ackermann
= Electric Field Strength E(t) = Re(E - )

Log(|E(t)])

on the internet: http://www.desy.de/xfel-beam/s2e/codes.html

¢ Gun cavity field maps 2018 (ackermann@temf.tu-darmstadt.de & Martin.Dohlus@desy.de)

e TESLA field maps 2018 (ackermann@temf .tu-darmstadt.de & Martin. Dohlus@desy.de)

e TESLA field maps 2014 (ackermann@temf .tu-darmstadt.de & Martin. Dohlus@desy.de)

¢ 3rd harmonic field maps 2017 (ackermann@temf.tu-darmstadt.de & Martin.Dohlus@desy.de)

¢ 3rd harmonic field maps 2014 (gjonaj@temf.tu-darmstadt.de & Martin Dohlus@desy.de)

e Steady-state resistive wake with oxid layer and roughness (Martin.Dohlus@desy.de &
Igor.Zagorodnov(@desy.de)




what no man has seen before B
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most of our simulations (see beam-dynamics homepage) have been done with an
asymmetric RZ-field; therefore the optimal working point (amplitude, phase and
solenoid) was different;

but the results (for same energy + optimal solenoid and phase) are quite close;
but the optimal solenoid strength is different ...



simulation with cathode distribution “BSA”, 250 pC
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fields with symmetry of revolution
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3d gun (with coupler), solenoid on axis

.10°® 3D on axis, front view at Z=3.2m
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fo = 1.3GHz

solenoid alignment
y

i"

|
o P
i ——

g
‘

_____,dM

p——

-
j
J— Al
fcut,HOM = 2.6 GHz - .iif -
amnsy

WP s )

fres = 1.3GHz Courtesy of DESY Zeuthen

criterion for solenoid alignment: trajectory (offset at Z = 3.2 m) insensitive to solenoid current

asymmetry with respect to y=0 plane
— solenoid alignment needs y_shift =-0.1 mm and x_rot =-0.5 mrad



3d gun (with coupler), solenoid aligned
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all together
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5.5

(normalized emittance)/m
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transverse phase-space
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trajectory in ACC1

effect of Tesla coupler kicks and rf-focussing

all correctors off!
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summary/conclusion

3D-field-maps for gun with coupler are available; there is also a rz-field-map,
derived from the 3D map

do not use old rz-file (Feng’s simulations)
transverse slice properties are not affected by gun asymmetry

effect of gun asymmetry is equivalent to a collective kick
further kicks by Tesla couplers in modules

this is compensated by correctors, but (due to limited space)
there are only few correctors between gun and ACC1

what is the purpose of solenoid alignment?
sensitivity of trajectory to solenoid strength — yes
optimal trajectory — perhaps no



