DOE laser beam shaping at XFEL

On the Generation of Spatial Flat-Top Laser Spots
and the Influence of Optical Errors on the Beam Dynamics

DESY/TEMF Meeting, Spring 2018

TEMF, Darmstadt, 8.6.2018

Optical Setup:
Steffen Schmid (TEMF), Sebastian Pumpe (DESY)
Beam Simulations:
Martin Dohlus (DESY)

DOE laser beam shaping at XFEL

On the Generation of Spatial Flat-Top Laser Spots and the Influence of Optical Errors on the Beam Dynamics

Optical Setup

Steffen Schmid (TEMF), Sebastian Pumpe (DESY)

Beam Simulations:

Martin Dohlus (DESY)

Laser Beam of the XFEL-Photogun

PITZ / XFEL-Photogun

(Image source: R. Martin, Master thesis, Institute of Physics, HU Berlin, 2013)

Spatial Laser Spot Profile

(Image source: M. Krasilnikov, et al., FEL2013, New York)
\Rightarrow Spatial flat-top profile of laser spot on cathode needed

Two Possibilities:

"Old": Beam Shaping Aperture (BSA)
"New": Diffractive Optical Elements (DOE)

"OId Method" - BSA

(\equiv Optical Imaging of an Aperture)

+ Robust against deviations of input beam quality
- Sophisticated imaging system needed
- Smaller spot sizes require larger optics
- 98\% of laser intensity gets lost (leads to further problems)

"New Method" - DOE

(三 Spatial Phase Modulation of Gaussian Laser Beam)

Optical lens transfer function:
$g_{o}\left(x_{0}, y_{o}\right)=e^{i \pi \frac{\left(x_{0}^{2}+y_{0}^{2}\right)}{\lambda f}\left(1-\frac{z}{f}\right) \cdots}$
$\cdots \iint g_{i}\left(x_{i}, y_{i}\right) e^{-\frac{2 \pi i}{\lambda f}\left(x_{0} \cdot x_{i}+y_{o} \cdot y_{i}\right)} d x_{i} d y_{i}$
\Rightarrow Fourier Transformation
(Formula: MIT 2.71/2.710 04/08/09 wk9-b-18)

"New Method" - DOE

(三 Spatial Phase Modulation of Gaussian Laser Beam)

"New Method" - DOE

(三 Spatial Phase Modulation of Gaussian Laser Beam)

+ "Simple" imaging system
+ Smaller spot sizes ($<\mathbf{5 0} \boldsymbol{\mu m}$) possible
+ Only ~3\% of laser intensity gets lost (increases setup stability)

- Sensitive on input beam quality

BSA and DOE spatial shaping at XFEL

Wavelength dependence of DOE

XFEL Laser 1: 257 nm
XFEL Laser 2: 266 nm

measured (266 nm)

DOE designed

for 257 nm

Measured transverse Profiles und Ideal Pencil Profiles

DOE

C_20180421_171716

$$
\frac{\sigma_{x}}{\sigma_{z}}=1.19
$$

$$
\sqrt{\sigma_{x} \sigma_{y}}=0.256 \mathrm{~mm}
$$

DESY. Slide by Martin Dohlus

$$
\rightarrow \text { pencil } 1
$$

C_20180422_135931

${ }^{-3} \mathbf{x s t d} / \mathrm{mm}=0.29539 \mathrm{ystd} / \mathrm{mm}=0.24957$

$$
\begin{aligned}
& \frac{\sigma_{x}}{\sigma_{z}}=1.18 \\
& \sqrt{\sigma_{x} \sigma_{y}}=0.272 \mathrm{~mm}
\end{aligned}
$$

\rightarrow pencil 2

Measured transverse Profiles and Ideal Pencil Profiles

Summary: Optical Setup

- Laser output to cathode transmission efficiency T increased
$\Rightarrow \quad$ Beam Shaping Aperture (BSA): $\quad T=10 \%$
Diffractive Optical Element (DOE): $\quad T=94 \%$
\Rightarrow Investigate long-term stability of DOE system
- Laser used for measurements $(266 n m) \neq$ DOE design (257 nm)
$\Rightarrow \quad$ Clipped $0^{\text {th }}$ order peak in DOE spot intensity map
$\Rightarrow \quad$ Repeat measurements with $\lambda_{\text {laser }}=257 \mathrm{~nm}$
- BSA \& DOE laser spots are both elliptical
$\Rightarrow \quad$ Effect of optics downstream of beam shaping setup

DOE laser beam shaping at XFEL

On the Generation of Spatial Flat-Top Laser Spots
and the Influence of Optical Errors on the Beam Dynamics

Optical Setup
Steffen Schmid (TEMF), Sebastian Pumpe (DESY)

Beam Simulations

Martin Dohlus (DESY)

Gun Simulation with Krack

Krack is an implementation of a Poisson solver (approach 2 or EB-method); it uses binning of the charge to an equidistant grid and the convolution with a kernel function (charged cuboids)
the start distribution is Gaussian in time (6.65 psec rms) and according to the measured profiles in the transverse dimension; simulations have been done with $250 \mathrm{pC}, 400 \mathrm{pC}$ and 500 pC with 1E6 particles
the transverse resolution is $0.07 \sigma_{t}$; all external fields (gun, solenoid and 8 tesla cavities) have rz-symmetry; the distribution is tracked from the cathode to the exit of the last cavity of ACC1;
the injection is calculated with 500 time steps and a longitudinal resolution better than $10 \mu \mathrm{~m}$ by a $2^{\text {nd }}$ order RK-integrator; the rest is calculated with a longitudinal resolution of $0.05 \sigma_{z}$ by a $5^{\text {th }}$ order RK-integrator
the gun-phase and solenoid strength are optimized for minimal projected emittance after ACC1; criterion $\varepsilon_{x, n} \varepsilon_{\chi, n}=$ min

Overview: Simulation of 250 pC from Cathode through ACC1 to $\mathrm{Z}=14.2 \mathrm{~m}$

pencil 1 (sigma $=0.256 \mathrm{~mm}$)
$B_{\text {sol }}=0.2050 \mathrm{~T} \varphi=\varphi_{0}-2.0 \mathrm{deg}$
$Q=250 \mathrm{pC} \quad \mathrm{I}_{\text {peak }}=13.93 \mathrm{~A}$
$\alpha_{x}=-5.40 \quad \alpha_{y}=-5.61$
$\beta_{x}=53.1 \mathrm{~m} \quad \beta_{y}=54.1 \mathrm{~m}$
$\varepsilon_{\mathrm{x}, \mathrm{p}}=0.614 \mu \mathrm{~m} \quad \varepsilon_{\mathrm{y}, \mathrm{p}}=0.612 \mu \mathrm{~m}$
$\varepsilon_{\mathrm{x}, \mathrm{s}}=0.375 \mu \mathrm{~m} \quad \varepsilon_{\mathrm{y}, \mathrm{s}}=0.375 \mu \mathrm{~m}$
pencil 2 (sigma $=0.272 \mathrm{~mm}$)
$B_{\text {sol }}=0.2050 \mathrm{~T} \varphi=\varphi_{0}-2.0 \mathrm{deg}$
$Q=250 \mathrm{pC} \quad \mathrm{I}_{\text {peak }}=14.14 \mathrm{~A}$
$\alpha_{x}=-4.77 \quad \alpha_{y}=-4.69$
$\beta_{x}=43.0 \mathrm{~m} \quad \beta_{\mathrm{y}}=42.4 \mathrm{~m}$
$\varepsilon_{\mathrm{x}, \mathrm{p}}=0.647 \mu \mathrm{~m} \quad \varepsilon_{\mathrm{y}, \mathrm{p}}=0.647 \mu \mathrm{~m}$
$\varepsilon_{\mathrm{x}, \mathrm{s}}=0.38 \quad \mu \mathrm{~m} \quad \varepsilon_{\mathrm{y}, \mathrm{s}}=0.38 \quad \mu \mathrm{~m}$

Overview: Simulation of 400 pC from Cathode through ACC1 to $\mathrm{Z}=14.2 \mathrm{~m}$

pencil 1 (sigma $=0.256 \mathrm{~mm}$)
$\mathrm{B}_{\text {sol }}=0.2055 \mathrm{~T} \varphi=\varphi_{0}-3.0 \mathrm{~d}$
$\mathrm{B}_{\text {sol }}=0.2055 \mathrm{~T} \varphi=\varphi_{0}-3.0 \mathrm{deg}$
$Q=400 \mathrm{pC} \quad \mathrm{I}_{\text {peak }}=19.36 \mathrm{~A}$
$\alpha_{x}=-3.23 \quad \alpha_{y}=-3.31$
$\beta_{x}=36.4 \mathrm{~m} \quad \beta_{y}=37.5 \mathrm{~m}$
$\varepsilon_{\mathrm{x}, \mathrm{p}}=0.629 \mu \mathrm{~m} \quad \varepsilon_{\mathrm{y}, \mathrm{p}}=0.632 \mu \mathrm{~m}$
$\varepsilon_{\mathrm{x}, \mathrm{s}}=0.51 \mu \mathrm{~m} \quad \varepsilon_{\mathrm{y}, \mathrm{s}}=0.51 \mu \mathrm{~m}$
pencil 2 (sigma $=0.272 \mathrm{~mm}$)
$\mathrm{B}_{\text {sol }}=0.2057 \mathrm{~T} \varphi=\varphi_{0}-2.5 \mathrm{deg}$
$Q=400 \mathrm{pC} \quad \mathrm{I}_{\text {peak }}=19.88 \mathrm{~A}$
$\alpha_{x}=-2.62 \quad \alpha_{y}=-2.49$
$\beta_{x}=28.3 \mathrm{~m} \quad \beta_{y}=27.0 \mathrm{~m}$
$\varepsilon_{x, p}=0.653 \mu \mathrm{~m} \quad \varepsilon_{y, p}=0.656 \mu \mathrm{~m}$
$\varepsilon_{x, \mathrm{~s}}=0.50 \quad \mu \mathrm{~m} \quad \varepsilon_{\mathrm{y}, \mathrm{s}}=0.50 \quad \mu \mathrm{~m}$

Overview: Simulation of 500 pC from Cathode through ACC1 to $\mathrm{Z}=14.2 \mathrm{~m}$

projected/slice emittance slice properties at $z\left(I_{\text {peak }}\right)$

A Figure of Merit
$\underset{\text { (assuming optimal beta function) }}{\text { power gain length }} L_{g}=1.18 \sqrt{\frac{I_{A}}{I_{\text {paak }}}} \frac{\left(\varepsilon_{n} \lambda_{w}\right)^{5 / 6}}{\lambda_{\gamma}^{2 / 3}} \frac{\left(1+\frac{K^{2}}{2}\right)^{1 / 3}}{K A_{J J}}\left(1+\delta\left(\sigma_{\gamma}, \mathrm{L}\right)\right)$

$$
f=\frac{\left(\varepsilon_{x, s} \varepsilon_{y, s}\right)^{5 / 12}}{\sqrt{I_{\text {peak }}}} \frac{\sqrt{\mathrm{A}}}{(\mu \mathrm{~m})^{5 / 6}}
$$

250 pC

C_20180421 (DOE) f $=$	0.2038
C_20180422 (BSA)	0.1729
pencil_1	0.1183
pencil_2	0.1181

400 pC C_20180421 (DOE) f=
0.1830 C_20180422 (BSA)
0.1685 pencil_1
0.1297
pencil_2
0.1267

```
500 pC C_20180421 (DOE) f=
0.1808 C_20180422 (BSA)
0.1711 pencil_1
0.1606
pencil_2
0.1508
```


Summary/Conclusion: Gun Simulations

simulation for 250pC: pencil emittances < BSA emittances < DOE emittances;
this is more pronounced for slice emittances \rightarrow there is a lot to gain by a flat profile
simulation for 500pC: saturation effects, differences in emittance are less significant
figure of merit based on gain length prefers flat beams with lower charge

Summary/Conclusion

DOE measurements have been done with laser 2 (266 nm); the measured profile is not flat; better results are expected for laser 1 (257 nm);
measured DOE profile is clipped
BSA \& DOE beams are not round \rightarrow it is not possible to optimize both foci simultaneously
simulation for 250pC: pencil emittances < BSA emittances < DOE emittances;
this is more pronounced for slice emittances \rightarrow there is a lot to gain by a flat profile
simulation for 500 pC : saturation effects, differences in emittance are less significant
figure of merit based on gain length prefers flat beams with lower charge
DOE measurements with laser 1 are planned

