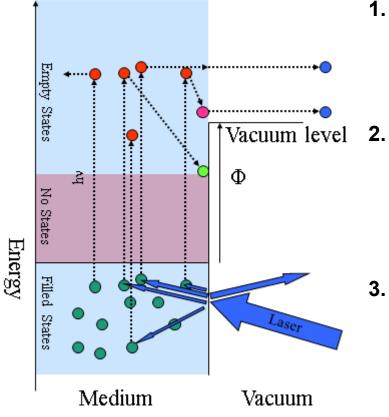
Selected Beam Studies at PITZ in 2017

Ye Chen and Mikhail Krasilnikov for the PITZ Team

TEMF-DESY Collaboration Meeting 06.10.2017, TEMF, Darmstadt, Germany


Contents

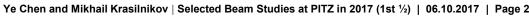
- Photoemission modeling in the gun
- Updates on beam asymmetry studies
- > Summary & Discussion

Review of Three-Step Photoemission (PE) model

For thorough descriptions, see:

. Optical excitation of electrons

- Reflection
- Transmission
- Energy distribution DOS


Migration of electrons to solid surface

- e⁻-phonon scattering (momentum change)
- e⁻-defect scattering (momentum change)
- e⁻-e⁻ scattering (energy change, metal)
- Random Walk (Monte Carlo)

. Escape to vacuum

- Overcome work function
 - ✓ Eg(band gap) + Ea(electron affinity) for semiconductor
 - Eg variation, Ea variation
 - ✓ Surface potential reduction due to field effect

- W. E. Spicer, Phys. Rev., 112 114 (1958)
 M. Cardona and L.Ley: Photoemission in Solids 1, (Springer-Verlag, 1978)
 W. E. Spicer & A. Herrera-Gomez, SLAC-PUB-6306 (1993)
 D. H. Dowell et al., Appl. Phys. Lett., 63, 2035 (1993)
- J. Smedley, P3 workshop 2016
- K. L. Jensen, P3 workshop 2016
- L. Cultrera, EWPAA 2017
- J. Smedley, EWPAA 2017

Motivation of further PE modeling at PITZ

- Explain PE associated measurement-simulation discrepancies in the gun
 - Charge production
 - Slice energy spread
 - Bunch length
 - Beam **asymmetries**, etc.
- > Assist semiconductor photocathode R&D

Background:

- + Photocathode R&D usually focuses on "single electron" emission mechanism
- + Operation condition of PITZ for optimized emittance @ transition regime between QE and space charge limited emission regimes
- + Classical electrodynamics seems not sufficient explaining transient PE process
- + Intrinsic emittance modeling not yet thorough

Our Challenge: Improved modeling of photoemission process

 \rightarrow At the semiconductor-vacuum interface in the gun how to model quantum mechanics with the presence of strong electromagnetic fields (RF + SPCH = collective effects)

Space charge dominated PE modeling

1. Driving (UV) laser

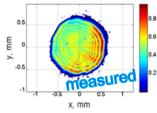
- Realistic transverse (Virtual-Cathode-based Core+Halo model*) distributions
- Realistic temporal distributions
- \rightarrow initializing transient emission process

2. Photocathode

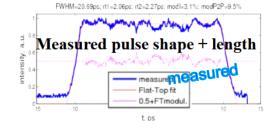
- QE map and QE characterization
- \rightarrow intrinsic emission homogeneity

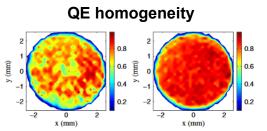
3. EM fields in close cathode vicinity

- RF, image charge & space charge
- \rightarrow time and space dependent cathode work function modulation

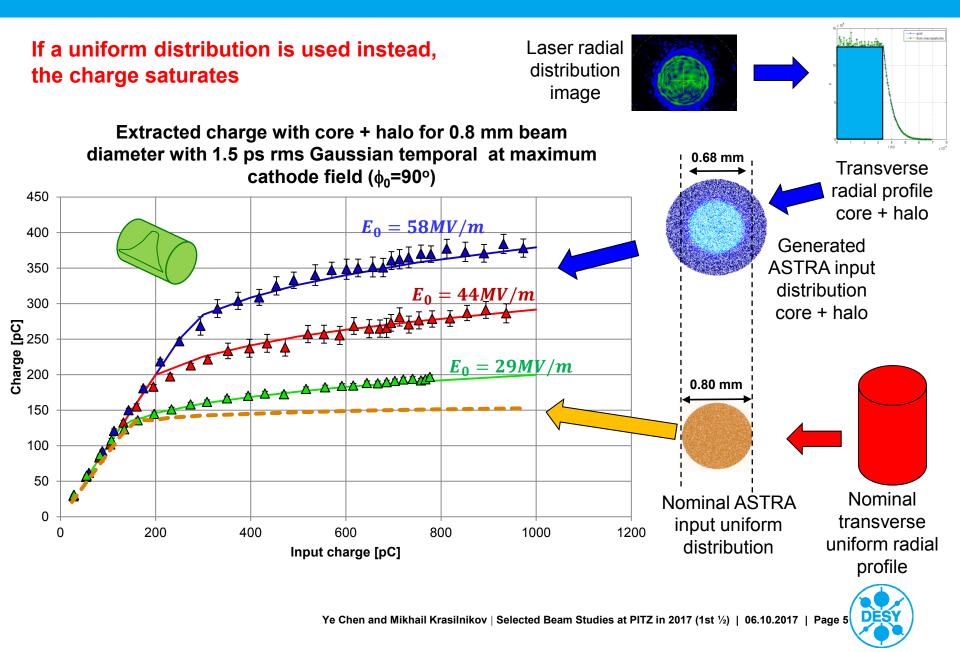

4. Quantum mechanics with the presence of strong EM fields at Semiconductor-Vacuum interface

- Surface states
- Band bending
- \rightarrow time and space dependent electron affinity variation
- \rightarrow kinetic energy variation

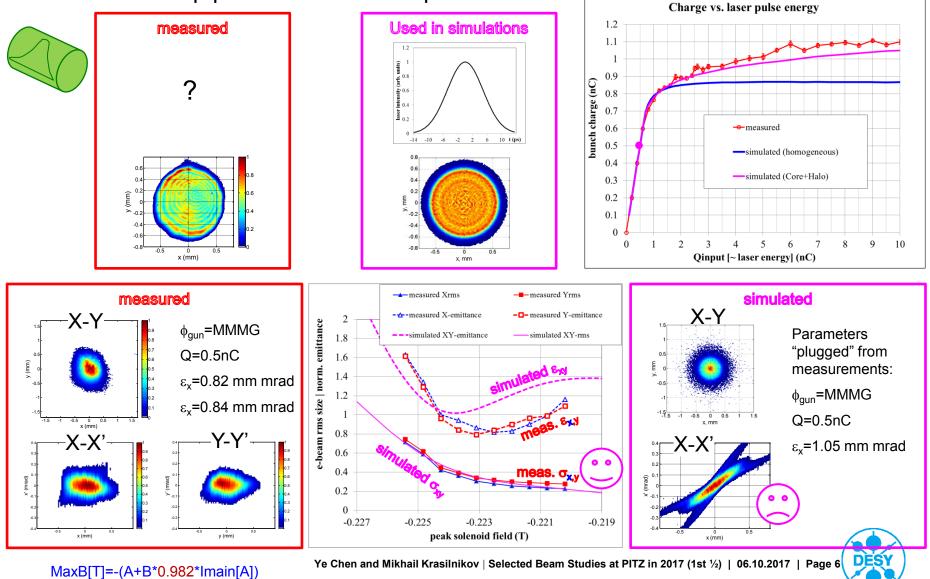

5. Others


- Temperature
- Surface charge limit**
- Secondary emission, etc.

Laser temporal profile



* C. Hernandez-Garcia et al., NIM A 871 (2017) 97–104 **M. Zolotorev, SLAC-PUB-5896 .1992



Status: Core + Halo Model applied to ASTRA simulations

ASTRA simulations for Gaussian pulses using Core+Halo

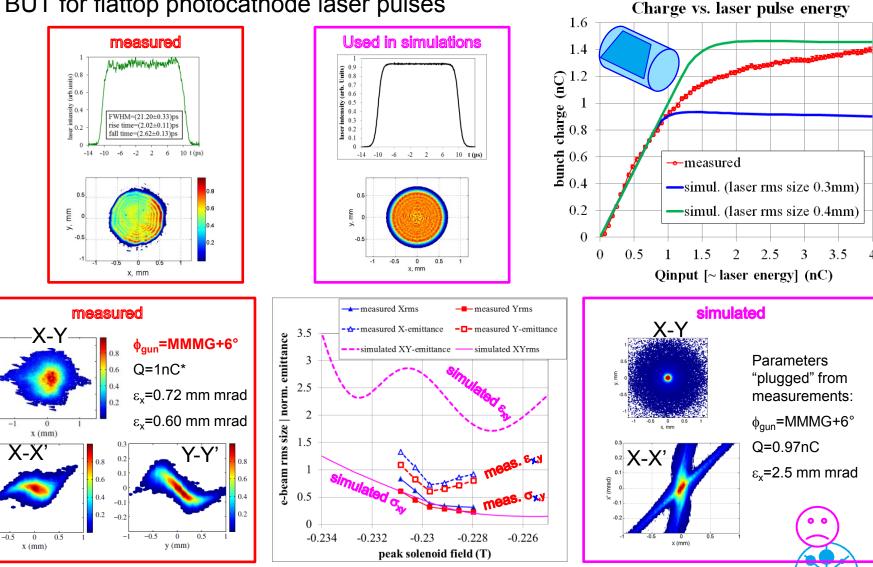
> BUT for flattop photocathode laser pulses

Status: ASTRA simulations for 2011 case using Core+Halo

> BUT for flattop photocathode laser pulses

y (mm)

-0.5


0.3

0.2

0.1

-0.2

-1

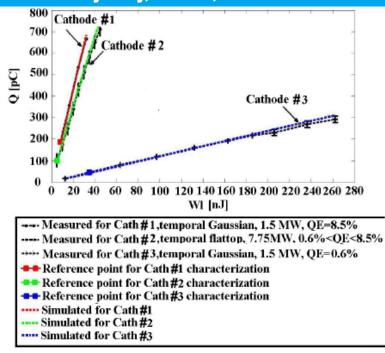
Ye Chen and Mikhail Krasilnikov | Selected Beam Studies at PITZ in 2017 (1st 1/2) | 06.10.2017 | Page 7

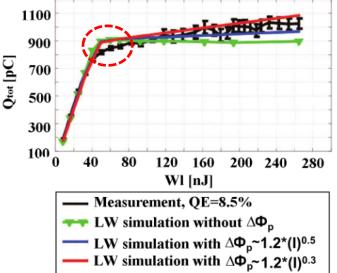
Status: PE modeling using a 3D full EM Lienard-Wiechert (LW) approach* *E. Gjonaj, TEMF, TU Darmstadt

LW Approach with 3D emission process

- LW solution for the electromagnetic field of a charged particle in arbitrary motion
- Full particle trajectory stored and used for field computation
- Field-induced work function modification:

$$\Delta \Phi_f(r_\perp, t) = \sqrt{\frac{q^3}{4\pi\varepsilon_0}} \left[E_{rf}\left(r_\perp, t\right) + E_{sc}\left(r_\perp, t\right) \right]$$


Charge production per simulation time step:


$$dQ\left(\mathbf{r}_{\perp},t\right) = \Delta t \iint_{S} q \frac{P_{l}\left(\mathbf{r}_{\perp},t\right)}{h\nu} QE\left(\mathbf{r}_{\perp},t\right) dS$$
$$QE = \frac{(1-R_{w})\sqrt{1+\frac{hv-\Phi_{w}}{E_{a}}}}{2(p_{0}+1)(1+\frac{E_{a}}{hv-\Phi_{w}})^{2}} \quad \text{K. Jensen, 2007}$$

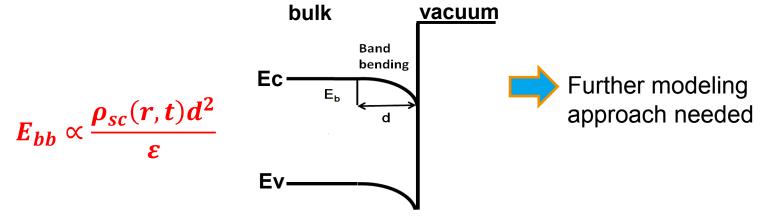
Status

- Dynamic generation of emitted particle distribution at cathode according to time-dependent emission models, taking into account full electromagnetic fields (RF + space-charge) during emission
- Charge production in **QE limited regime** agrees with measurements
- In space charge dominated regime, remaining deviations w.r.t. simulations probably due to:

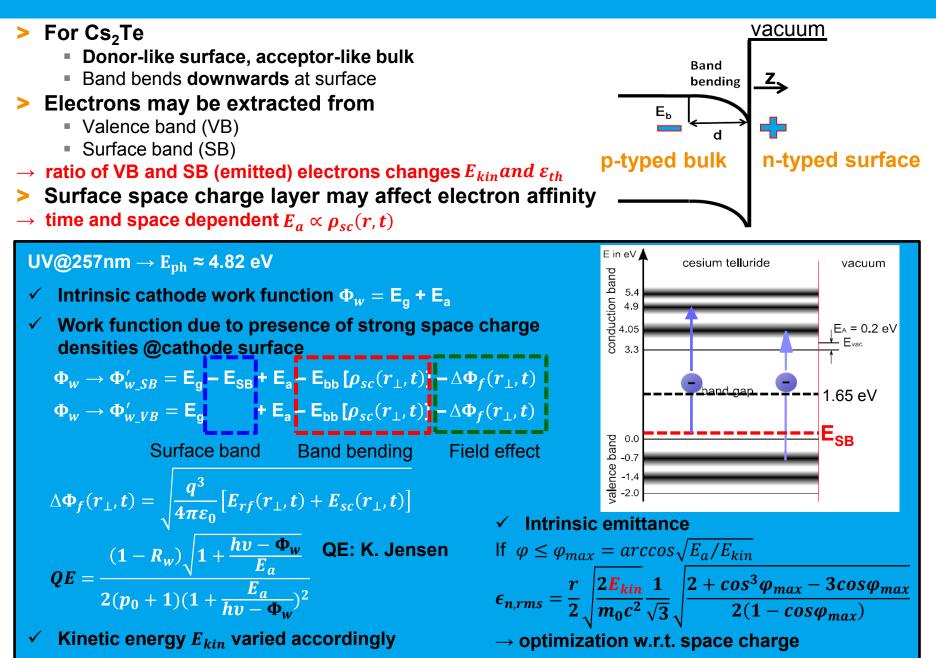
 ✓ Ideal beam distributions initially plugged in the simulations or/and time dependent work function variation resulting from quantum mechanics

Further PE modeling: band bending \rightarrow space charge layer

Surface states


- Due to lattice translational symmetry broken @cathode surface
- Surface band lying within bandgap of the bulk (fewer bonds)
- Possessing charging character

Surface states → band bending


- Charge carriers falling into surface states → "surface charged"
- Matching fermi level at bulk and surface → band bent
- Band bending → **space charge layer formed** (from surface into the bulk)

Characteristics

- Band bends quadratically
- Local curvature proportional to local space charge density
- Bending amount and width depending also on material properties

PE modeling: interpretation of surface space charge layer

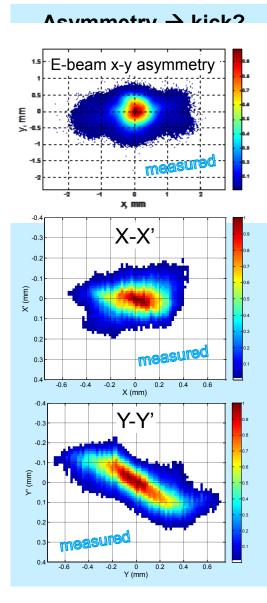
Updates on beam asymmetry studies (RF coupler kick simulations & Gun quadrupole for compensating beam asymmetries)

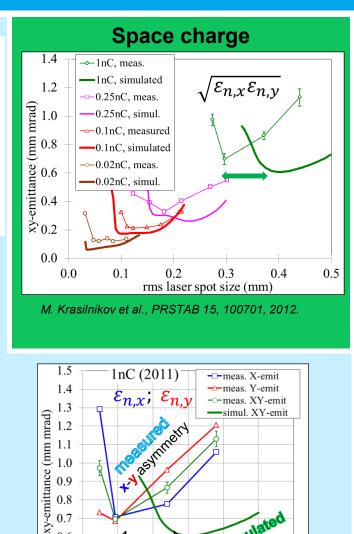
+ Igor Isaev

Ye Chen and Mikhail Krasilnikov | Selected Beam Studies at PITZ in 2017 (1st 1/2) | 06.10.2017 | Page 11

Motivation of beam asymmetry studies

0.8


0.7


0.6

0.5

0.25

0.3

Possible sources of the beam asymmetry:

- Vacuum mirror
- Stray magnetic fields
- Related to the laser polarization
- Particular cathode
- ...
- RF coupler field asymmetry
- · Solenoid imperfections (anomalous quadrupole fields)

Ongoing activities

- \rightarrow coupler kick simulations
- \rightarrow solenoid field simulations
- \rightarrow simulations with rotational quads model for fitting measurements
- \rightarrow gun quadrupole designs and simulations
- \rightarrow gun quads compensation

0.55

simulated

0.5

0.4

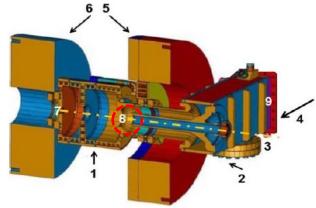
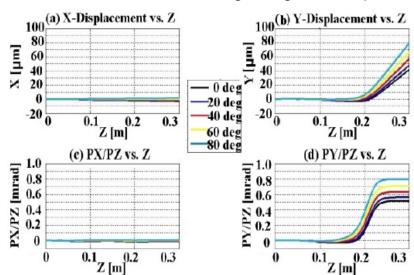
rms laser spot size (mm)

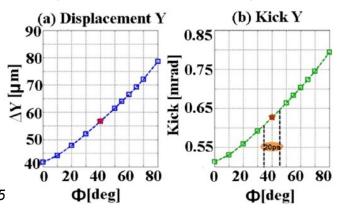
0.45

0.35

Updates on coupler RF kick studies (no solenoids)

Kick characterization

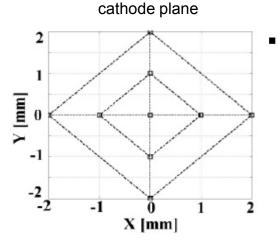




Figure 1: Sketch of the PITZ gun with coaxial RF coupler: 1-gun cavity, 2-door-knob transition, 3-cavity axis, 4-RF feeding direction, 5-main solenoid, 6-bucking solenoid, 7-cathode, 8-end of coaxial line and 9-reference position of WG port for simulations. Note that this sketch is rotated by 90 degrees compared to the computational model used in the follow-up simulations.

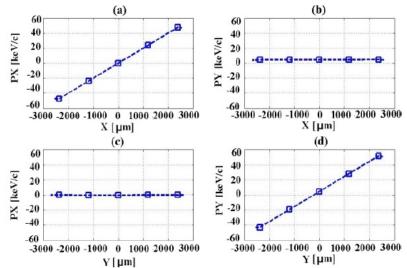
- Field calculation done under optimum operation condition of the gun (mini.S11 by adjusting inner conductor length)
- 3D field map used for later particle tracking simulations
- RF dynamics → no solenoids, no space charge Y. Chen et al., FEL2017 proceedings, WEP005

Beam centroid tracking using field map

Vertical displacement at z = 0.3 m and kick strength as a function of the gun phase



Updates on coupler RF kick studies (no solenoids)


Kick quantification

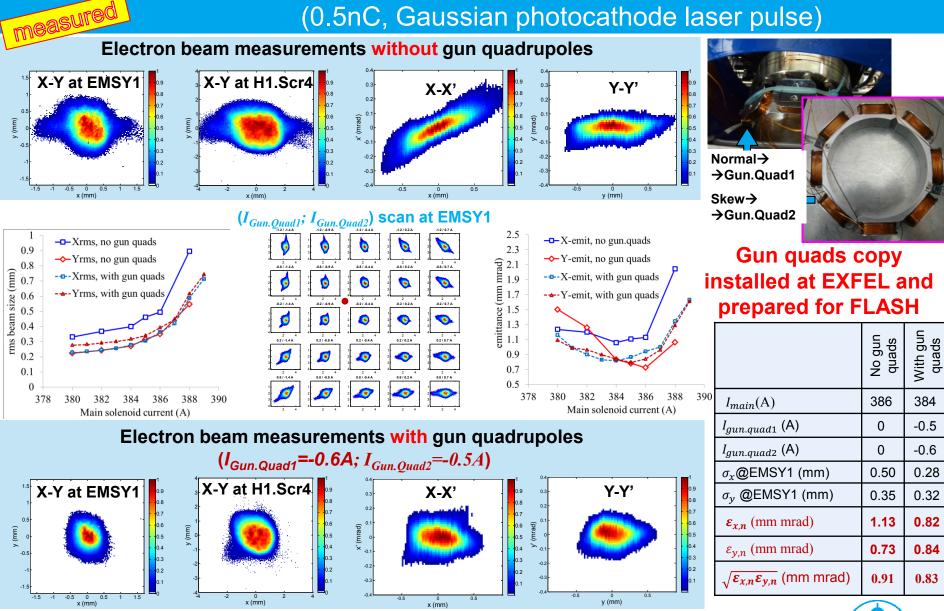
Beam centroid positions on

Particle tracking simulation results for multipole expansion based quantification of the integral kick

Using field map tracking a set of particles on the cathode plane though kick region till doorknob transition region

 Fitting multipole expansion form of the integral kick using simulation results

Multipole expansion of the integral kick


- $P_X = P_{0x} + (K_{RF} + K_N)X + K_SY$ $P_Y = P_{0y} + (K_{RF} K_N)Y + K_SX$
- **X**, **Y**: particle offsets from the axis at the location of the integral kick
- P_x , P_y : particle transverse momenta in the horizontal and vertical direction

 P_{ox} , P_{oy} : horizontal and vertical dipole kicks K_{RF} : RF focusing strength of cylindrical symmetric mode K_N and K_s : normal and skew quadrupole kick strength

- ✓ Vertical dipole kick~4.576 keV/c, time dependent
- ✓ Quadrupole kick strength estimation
 - Normal quadrupole component ~1.0e-5 keV/c/ μ m
 - Skew quadrupole component~5.0e-6 keV/c/µm
- ✓ (20-ps) Bunch tail sees higher kick strength than the head by 0.05 mrad @ 6.5MW

Electron beam X-Y asymmetry compensation with gun quads

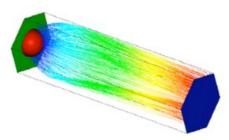
(0.5nC, Gaussian photocathode laser pulse)

M. Krasilnikov et al., FEL2017 proceedings, WEP007

Ye Chen and Mikhail Krasilnikov | Selected Beam Studies at PITZ in 2017 (1st 1/2) | 06.10.2017 | Page 15

Summary

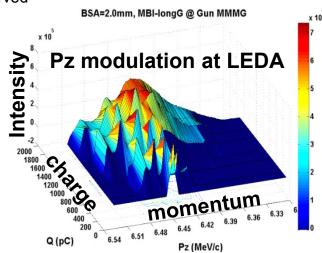
- Further photoemission modeling towards quantum mechanics with the presence of strong space charge densities at cathode surface
 - current status
 - further modeling approaches
- Coax coupler RF kick characterized and quantified under optimized operation conditions of the gun
 - Time dependent vertical dipole kick, ~0.65 mrad (MMMG phase, 6.5MW)
 - Small quadrupole kick estimated
- > Beam asymmetry compensation with gun quadrupoles optimization
 - Promising results → "round beam, round emittance"

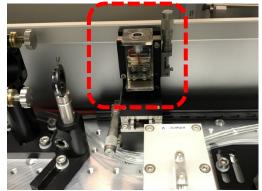

Thank you very much!

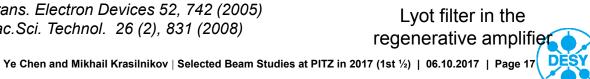
Backup: Updates on "Pz modulation" studies

(?)Cathode laser temporal profile

- Long Gaussian (11-11.5ps FWHM, Lyot filter in) →Pz modulation observed
- Short Gaussian (~2ps FWHM, Lyot filter out) \rightarrow not yet observed
- \rightarrow Lyot filter, the source of modulation?
- (?)Emission mechanism




- Emitted charge \rightarrow fields on surface that affects subsequent emissions
- \rightarrow "oscillations induced by a sudden influx of charge can persist".


Demonstration for Cu and Cs₃Sb using MICHELLE

- J.J. Petillo et al., IEE trans. Electron Devices 52, 742 (2005)
- K.L. Jensen et al., J.Vac.Sci. Technol. 26 (2), 831 (2008)

See: M. Krasilnikov, DESY-TEMF-Meeting, 01.2017

