Field Map Calculation of the Fundamental Mode for the Normal Conductive PITZ Gun

W. Ackermann, H. De Gersem, W. F. O. Müller Institut Theorie Elektromagnetischer Felder, Technische Universität Darmstadt

Outline

- Motivation
- Computational Model
 - Geometry and mesh information
- Simulation Results
 - Antenna and cavity tuning
 - Electromagnetic fields and Poynting vector
 - Electromagnetic fields in the vicinity of the cavity axis
- Summary / Outlook

Outline

Motivation

- Computational Model
 - Geometry and mesh information
- Simulation Results
 - Antenna and cavity tuning
 - Electromagnetic fields and Poynting vector
 - Electromagnetic fields in the vicinity of the cavity axis
- Summary / Outlook

Outline

- Motivation
- Computational Model
 - Geometry and mesh information
- Simulation Results
 - Antenna and cavity tuning
 - Electromagnetic fields and Poynting vector
 - Electromagnetic fields in the vicinity of the cavity axis
- Summary / Outlook

Approach

- Frequency domain (driven problem) 🗸
 - Frequency and imposed mode magnitude fixed
 - Find antenna coupling such that reflection is minimal under the resonance condition in the cavity
- Frequency domain (real eigenvalue with complex arithmetic) 🗶
 - Determine magnitude of incident and reflected modes at the port interface
 - Find antenna coupling such that reflection is minimal
- Frequency domain (complex eigenvalue) 🗸
 - Change propagation direction of the fundamental port mode
 - Find antenna coupling such that $Q_{ext} = Q_{loss}$

PITZ Gun

TECHNISCHE Computational Model UNIVERSITÄT DARMSTADT Port PITZ Gun - Doorknob Rectangular transition Waveguide Coaxial Waveguide Lossy Cavity Doorknob (PEC) Grid Antenna (Copper)

- Gun ALL CONTRACTOR CONTRAC 1/4 FEM Mesh N_{tetra} ≈ 2.100.000

Outline

- Motivation
- Computational Model
 - Geometry and mesh information

Simulation Results

- Antenna and cavity tuning
- Electromagnetic fields and Poynting vector
- Electromagnetic fields in the vicinity of the cavity axis
- Summary / Outlook

- Antenna Tuning (symmetric model without waveguide)
 - Untuned Cavity (half-cell and full-cell radii according to CAD model)

_	L_coax	F	Q	Q_ext	Q_loss
1	-4.	1.30249×10 ⁹	-151187.	-20003.4	23053.6
2	-3.	1.30249×10^{9}	-316441.	-21489.2	23054.9
3	-2.	1.30249×10^{9}	6.44473×10 ⁷	-23060.	23051.7
4	-1.	1.30249×10^{9}	337 582.	-24748.4	23058.
5	0.	$1.30249 imes 10^{9}$	173397.	-26571.7	23040.9
6	1.	1.30249×10^{9}	109268.	-29213.8	23051.
7	2.	1.3025×10^{9}	81910.9	-32089.	23056.5
8	з.	1.3025×10^{9}	66614.2	-35247.3	23050.6
9	4.	1.3025×10^{9}	56970.	-38716.	23050.9
10	5.	1.3025×10^9	50325.7	-42529.5	23050.2
		N _{tetra}	a ≈ 580.000		

- Antenna Tuning (symmetric model without waveguide)
 - Untuned Cavity (half-cell and full-cell radii according to CAD model)

Cavity Tuning

- Rotationally symmetric model

Antenna Tuning

- Tuned Cavity ($R_{half} = 90.148 \text{ mm}, R_{full} = 90.473 \text{ mm}$)

	L_coax	F	Q	Q_ext	Q_loss
1	-3.	1.3×10^{9}	-91023.3	-18714.7	23558.4
2	-2.	1.3×10^{9}	-149064.	-20344.5	23560.
3	-1.	1.3×10^{9}	-358763.	-22109.9	23562.
4	0.	1.3×10^{9}	1.23961×10 ⁶	-24020.	23563.4
5	1.	1.3×10^{9}	243383.	-26088.5	23562.8
6	2.	1.3×10^{9}	140128.	-28325.6	23562.6
7	з.	1.3×10^{9}	100848.	-30746.8	23562.9

- Antenna Tuning
 - Untuned Cavity (half-cell and full-cell radii according to CAD model)

• Electric Field Strength $|\vec{E}| = \sqrt{\vec{E} \cdot \vec{E^*}}$

• Magnetic Flux Density $|\vec{B}| = \sqrt{\vec{B} \cdot \vec{B}^*}$

• Electric Field Strength $\vec{E}(t) = \operatorname{Re}(\vec{E} \cdot e^{i\omega t})$

 $\operatorname{Log}(|\vec{E}(t)|)$

• Electric Field Strength $\vec{E}(t) = \operatorname{Re}(\vec{E} \cdot e^{i\omega t})$

• Poynting Vector $\vec{S} = \frac{1}{2} \vec{E} \times \vec{H}^*$ - Active power **GlyphVector Magnitude** 5e+6 1e+7 2e+7 2.0e+065e+7 1e+8 2.0e+08 $\operatorname{Re}(\vec{S})$ -1 1=

- FEM

Cavity Fields along the Axis

15.11.2017 TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann 33

▼×

- Kirchhoff

0.20

0.15

0.10

0.05

Fx

Cavity Fields along the Axis

8000

6000

4000

2000

Ey

- Single Particle Tracking
 - Phase scan and energy gain

- Single Particle Tracking
 - Trajectory for phase at MMMG

- Single Particle Tracking
 - Phase scan with respect to MMMG phase (trajectory and kick)

Single Particle Tracking

- Phase scan with respect to MMMG phase (trajectory and kick)

Y. Chen, "Coaxial Coupler RF Kick in the PITZ RF Gun", WEP005, FEL 2017, Santa Fee, NM, USA

- 0 deg -20 deg

Outline

- Motivation
- Computational Model
 - Geometry and mesh information
- Simulation Results
 - Antenna and cavity tuning
 - Electromagnetic fields and Poynting vector
 - Electromagnetic fields in the vicinity of the cavity axis
- Summary / Outlook

Summary / Outlook

- Summary:
 - Precise modeling of the 1.3 GHz PITZ gun including the rectangular high power input coupler
 - Eigenmode analysis performed for the accelerating mode using port mode excitation and lossy gun material
 - Electromagnetic field extraction based on symmetric tetrahedral meshes for classical FEM solutions and the Kirchhoff integral representation
- Outlook:
 - Field map for accurate beam dynamics studies required?

