Wakefield calculations with PBCI

TECHNISCHE UNIVERSITÄT DARMSTADT

Erion Gjonaj Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Germany

1

Contents

- Recent wakefield/impedance calculations
 - Joule losses in bunch dechirper
 - LHC RF fingers
 - Accelerator on chip
- New developments with the PBCI code
 - Dielectric materials
 - Surface impedance model
 - Absorbing boundary conditions
- Summary

Period, p	0.5 mm
Longitudinal gap, t	0.25 mm
Full depth, h	0.5 mm
Nominal half aperture, a	0.7 mm
Width, w	variable, 1.5 – 48 mm
Material	lossy metal (Al), $\kappa_0 = 3.56 \cdot 10^7 S/m$

Bunch length	100um
Width, w	variable, 12 – 48mm
Calculation method	CST, PBCI, theory

Method - dechirper width	Loss factor (V/pC/mm)
PBCI - w = 12mm	11.97
PBCI - w = 24mm	11.97
PBCI - w = 48mm	11.97
CST - w = 12mm	11.79
Theory $- w = 12mm$	14.5

- 1) CST and PBCI agree very well.
- CST uses free space boundary conditions; in PBCI, the structure is closed by lateral PEC walls. For w >= 12mm, boundary conditions play no role in the short range.
- 3) Theoretical estimation is 18% off

Bunch dechirper (with K. Bane, G. Stupakov)

- 1) The main resonance peak predicted by theory is shifted to higher frequencies by ~23% compared to simulations.
- 2) Very good agreement with the mode matching method (Zhang et. al, 2015)

5

November 15, 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | PD Dr.rer.nat. Erion Gjonaj | 6

Recent wakefield/impedance calculations

Bunch length	100um
Bunch charge	0.3nC
Repetition rate	100kHz
Width, w	variable, 1.5 – 12mm
Calculation method	CST

- 20 P = 13.5 W/m 10 P = 6.68 W/m 7 6 5 P / W/m P = 2.88 W/m 2 P = 1.23 W/m w = 1.5mm w = 3mm= 6mm 1 = 12mm = 3mm - fit 0.7 = 6mm - fit 0.6 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 z/m
- 1) Joule losses could be calculated only for a bunch length 100um
- 2) The results are reliable up to w=6mm; for w=12, steady state loss is obtained by extrapolation.
- Computed losses are by a factor ~2 higher than predicted by theory

Dechirper width, w / mm	Joule loss / W/m
1.3	1.23
3	2.88
6	6.68
12	13.5
12 - theory	6

Period, p	0.5 mm
Longitudinal gap, t	0.25 mm
Full depth, h	0.5 mm
Width, w	12mm
Length, L	variable, 10 – 408mm
Material	lossy metal (Al), $\kappa_0 = 3.56 \cdot 10^7 S/m$

Bunch dechirper (with K. Bane, G. Stupakov)

Comparison of theory and simulation for the loss/kick factors for different beam distances

Bunch dechirper (with K. Bane, G. Stupakov)

Comparison of theory and simulation for longitudinal impedannce a=1.5mm

Bunch dechirper (with K. Bane, G. Stupakov)

Longitudinal beam impedance for different beam distances, a=0.25 – 1.5mm (top/left to bottom/right)

Bunch dechirper (with K. Bane, G. Stupakov)

Longitudinal wake potentials for different beam distances, a=0.25 – 1.5mm (top/left to bottom/right)

Bunch dechirper (with K. Bane, G. Stupakov)

Joule losses for the single plate are a factor 2 higher than predicted by theory

LHC RF-Fingers (with E. Metral, U. Niedermeier)

November 15, 2017 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | PD Dr.rer.nat. Erion Gjonaj | 14

ACHIP-cell (with U. Niedermeier, O.-B. Frankenheim)

Dielectric structures

ACHIP-cell (with U. Niedermeier, O.-B. Frankenheim)

Vector fitting of surface impedance functions

• The case of resistive wall impedance: $Z_s(\omega) \cong \sqrt{\frac{j \omega \mu}{\sigma(\omega) + j \omega \varepsilon}}$

Example : Cu - N=21, ~ 10MHz-5THz, Δf ~5MHz

Auxiliary Differential Equation (ADE) formulation

$$\vec{n} \times \vec{E}(t) = L \cdot \frac{d}{dt} [\vec{n} \times \vec{n} \times \vec{H}(t)] + \sum_{i=0}^{Np} \vec{n} \times \vec{G}_i(t)$$
$$\vec{n} \times \vec{G}_0 = \alpha_0 [\vec{n} \times \vec{n} \times \vec{H}]$$
$$\frac{d}{dt} \vec{n} \times \vec{G}_i + \beta_i \vec{n} \times \vec{G}_i = \alpha_i [\vec{n} \times \vec{n} \times \vec{H}]$$

set of ADE for magnetic "surface currents" (Woyna, Gjonaj, 2014)

- Modified discrete Maxwell's equations:

Approximation of curved PEC boundaries

$$E_{tan} = Z(\omega)\vec{n}_l \cdot (\vec{n}_s \times \vec{H}_{tan}) = ..$$
$$E_{tan} = Z(\omega) \underbrace{\vec{n}_l \cdot (\vec{n}_s \times \vec{n}_t)}_{\vec{n}_f \cdot \vec{n}_t} H_f$$

correction factor using SIBC surface normal

global model parameters Units = cm Conformal = yes

background material
Material(0) = vacuum

input shapes
Shape(1) = lossy_pipe.stl
Material(1) = lossy_metal
Conductivity(1) = 0.58e+6
LossyOrder(1) = 10

Example input in PBCI

Approximation of curved PEC boundaries

Absorbing boundaries for open structures

Single plate dechirper (reloaded)

- Need absorbing boundary conditions on all sides
- Complex frequency shifted formulation of PML (CFS PML) now implemented in PBCI
- Absorbing layers of variable length and different conductivity are supported

Open structures

Single plate dechirper (reloaded)

Open structures

Single plate dechirper (reloaded)

Summary

- Report of some activities in 2017
- New implementations in PBCI
 - Boundary conformal approximation (PEC only)
 - Dielectric materials
 - Surface impedance model
 - Open structures
- Not yet completed
 - Surface impedance from table data
 - Anisotropic SIBC, calculation of total wall losses, ...
 - User parameter control for PML

