Simulating Hysteresis and Remanence in Accelerator Magnets

Herbert De Gersem, Stephan Koch, Ulrich Römer, Sebastian Schöps

Example: GSI-SIS-100 magnet

length: 3 m

Example: GSI-SIS-100 magnet

excitation profile

Magnetoquasistatic formulation

differential equation: $\nabla \times (\nu \nabla \times \vec{A}) + \sigma \frac{\partial \vec{A}}{\partial t} = \vec{J}_s$ reluctivity reluctivity conductivity density magnetic vector potential current density

Discretisation in space

Overview

- magnet simulation (standard 3D FE solver)
- challenges
 - o geometrical details
 - o materials
 - o transient effects
 - high accuracy
- magnet simulation (dedicated 3D FE solver)
- hysteresis modelling
- conclusions

Challenge 1: Detailed geometry

yoke

- length (meter)
 vs. lamination thickness (mm)
- o shimming, holes

beam tube

o < 1mm thick</p>

end-winding parts

 determine the eddy currents in the end plates

yoke iron:

- anisotropic (rolling & transverse direction)

- $\mathcal{V}_{\mathrm{rol}}$ reluctivity in the rolling direction
- ${\cal V}_{
 m trans}$ reluctivity in the transversal direction R local rotation matrix

Newton method

yoke iron:

- anisotropic (rolling & transverse direction)
- nonlinear (saturation)

yoke iron:

- anisotropic (rolling & transverse direction)
- nonlinear (saturation)
- hysteretic (remanent field)

Jiles-Atherton model

Preisach model

estimation of losses by Steinmetz-Bertotti

yoke iron:

- anisotropic (rolling & transverse direction)
- nonlinear (saturation)
- hysteretic (remanent field)
- composite (lamination)

stacking factor

 $\gamma_{\rm st} \approx 0.95 \leq \sim 1$

coating

ron

along lamination direction

$$\frac{1}{\nu_{xy}} = \frac{\gamma_{\text{st}}}{\nu_{\text{Fe}}} + \frac{1 - \gamma_{\text{st}}}{\nu_0}$$

perpendicular to laminates

 $v_z = \gamma_{\rm st} v_{\rm Fe} + (1 - \gamma_{\rm st}) v_0$

yoke iron:

- anisotropic (rolling & transverse direction)
- nonlinear (saturation)
- hysteretic (remanent field)
- composite (lamination)
- variability

stochastics, sensitivity (see recent research of Ulrich Römer and Sebastian Schöps, TU Darmstadt)

yoke iron:

- anisotropic (rolling & transverse di
- nonlinear (saturation)
- hysteretic (remanent field)
- composite (lamination)
- variability

superconductor:

- critical current
- temperature
- magnetic field

Challenge 3: Transient phenomena

lamination

hysteresis + remanence

Jiles-Atherton model Preisach model estimation of the remanence (based on data from material vendor)

Challenge 3: Transient phenomena

lamination

- hysteresis + remanence
- eddy currents

 $\nabla \times \left(v \nabla \times \stackrel{\mathsf{r}}{A} \right) + \sigma \frac{\partial A}{\partial t} = \stackrel{\mathsf{r}}{J}_{\mathsf{s}}$

eddy current term + (simple) homogenisation $\sigma_{xy} = \gamma_{st} \sigma_{Fe}$

 $\sigma_z = 0$

or + multi-scale model (hand-shaking)

Challenge 3: Transient phenomena

lamination

- hysteresis + remanence
- eddy currents

beam tube

⊾ y/r

• eddy currents

superconductor

Bean model → magnetisation (Christine Völlinger)
 implemented in ROXIE

```
<sup>x/r</sup> fig. courtesy C. Völlinger
```


TECHNISCHE **Challenge 3: Transient phenomena** UNIVERSITÄT DARMSTADT lamination hysteresis + remanence \cap $J_{z}(\theta)$ eddy currents 0 R beam tube eddy currents Msuperconductor persistent currents 0 dB_z coupling currents 0 dt cable eddy currents 0 $\nabla \times \left(v \nabla \times \overset{\mathbf{r}}{A} \right) + \sigma \frac{\partial A}{\partial t} + \nabla \times \left(v_0 \overline{\overline{\tau}}_{cb} \nabla \times \frac{\partial A}{\partial t} \right) = \overset{\mathbf{r}}{J}_s$ additional magnetisation

Challenge 4: High accuracy requirements

losses

- o dimensioning of the cooling system
- hot spots
- o quench

aperture field

- o multipoles during injection, ramping and extraction
- + influence of eddy currents

huge models parallelisation, multi-core computers

Overview

- magnet simulation (standard 3D FE solver)
- challenges
 - \circ geometrical details
 - o materials
 - transient effects
 - high accuracy
- magnet simulation (dedicated 3D FE solver)
- hysteresis modelling
- conclusions

Dedicated Simulation Tool

+ Stephan Koch, Jens Trommler

SS 2015 | TU Darmstadt | Fachbereich 18 | Institut für Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Herbert De Gersem | 28

Overview

- magnet simulation (standard 3D FE solver)
- challenges
 - \circ geometrical details
 - o materials
 - transient effects
 - high accuracy
- magnet simulation (dedicated 3D FE solver)
- hysteresis modelling
- conclusions

Hysteresis

- Ferromagnetic materials
 - remanence
 - hysteresis losses
- Superconductive materials
- Friction

Hysteresis and Field Modelling

- transient field simulation + hysteresis model
- post-processing step + simple hysteresis model
 e.g. hysteresis losses: Steinmetz formula

$$p_{\text{hyst}} = \sigma_{\text{hyst}} k_{\text{hyst}} \frac{f}{50 \text{ Hz}} \left(\frac{\left|\frac{B}{B}\right|}{1 \text{ T}}\right)^{\frac{1}{2}}$$

 post-processing step + simple remanence model e.g. remanence: look-up table

Hysteresis Models

Preisach model

. . .

- Jiles-Atherton model
- Stone-Wolfarth model

Preisach model

I.D. Mayergoyz, "Mathematical Models of Hysteresis", Springer-Verlag, New York, 1991, pp. 1-44.

SIS100: Remanence at Injection

injection field (with remanence)

injection field (without remanence)

remanent field

region with heavy saturation acts as "source" of magnetisation

SIS100: Remanence at Injection

Conclusions

- nonlinear 3D transient magnetic simulation feasible with of-the-shell software
- challenges remain and are problem specific
 - o geometrical details
 - o materials
 - transient effects
 - high accuracy
- hysteresis modelling (Preisach)

necessity of accurate material models and measurement data

