Field Map Calculation for the Fundamental Mode for a Single TESLA 3.9 GHz Cavity with Couplers

W. Ackermann, H. De Gersem, W. F. O. Müller Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt

Outline

- Motivation
- Computational Model
 - Geometry and mesh information
- Simulation results
 - Field components parallel to the cavity axis
 - FEM on tetrahedral meshes
 - Kirchhoff integral representation
- Summary / Outlook

Outline

Motivation

- Computational Model
 - Geometry and mesh information
- Simulation results
 - Field components parallel to the cavity axis
 - FEM on tetrahedral meshes
 - Kirchhoff integral representation
- Summary / Outlook

Motivation

Motivation

 TESLA 3.9 GHz Cavity Cavity Cell - CAD Model Downstream **HOM Coupler** Beam Tube Input Coupler

Motivation

 TESLA 3.9 GHz Cavity Cavity Cell - CAD Model Downstream **HOM Coupler Beam Tube** Input Coupler

Outline

Motivation

Computational Model

- Geometry and mesh information

Simulation results

- Field components parallel to the cavity axis
- FEM on tetrahedral meshes
- Kirchhoff integral representation
- Summary / Outlook

January 25, 2017 | TU Darmstadt | Fachbereich 18 | Institut für Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 12

Computational Model

TECHNISCHE UNIVERSITÄT DARMSTADT

TESLA 3.9 GHz Cavity

- CAD Model of the Vacuum with surface mesh on the PEC couplers

Outline

- Motivation
- Computational Model
 - Geometry and mesh information

Simulation results

- Field components parallel to the cavity axis
- FEM on tetrahedral meshes
- Kirchhoff integral representation

Summary / Outlook

- TESLA 3.9 GHz Cavity
 - Fundamental mode

Absolute value of the electric field strength

Logarithmic scale from 1e4 to 1e7 V/m

LPW = 20 3.337.736 Tetrahedrons

Convergence study for global quantities

- Resonance frequency

Convergence study for global quantities

- Quality factor

- Field components parallel to the cavity axis (LPW 4,8,16)
 - Transversal offset at $x_0 = 5 \text{ mm}$, $y_0 = 5 \text{ mm}$

Field component E_x parallel to the cavity axis

Field component E_v parallel to the cavity axis

Field component E_z parallel to the cavity axis

Field component cB_x parallel to the cavity axis

Field component cB_v parallel to the cavity axis

Field component cB_z parallel to the cavity axis

- Field components parallel to the cavity axis (LPW 4,8,16)
 - Transversal offset at $x_0 = 0 \text{ mm}$, $y_0 = 0 \text{ mm}$

Field component E_x parallel to the cavity axis

Field component E_v parallel to the cavity axis

Field component E_z parallel to the cavity axis

Field component cB_x parallel to the cavity axis

Field component cB_v parallel to the cavity axis

Field component cB_z parallel to the cavity axis

- Field Representation in the Finite Element Method
 - Vector Basis Funktion $\vec{w}_0(\vec{r})$

Example: Equilateral tetrahedron

Point	x	У	z
0	0	0	0
1	1	0	0
2	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$	0
3	$\frac{1}{2}$	$\frac{1}{2\sqrt{3}}$	$\sqrt{\frac{2}{3}}$

- Field Representation in the Finite Element Method
 - Representation of vector fields

$$\vec{f}(\vec{r}) = \sum_{i=0}^{N-1} a_i \ \vec{w}_i(\vec{r})$$

- Projection of an arbitrary vector field \vec{f} on the basis \vec{w}_i

- Field Representation in the Finite Element Method
 - Residuals of vector fields

$$\vec{R}(\vec{r}) = \sum_{i=0}^{N-1} a_i \ \vec{w}_i(\vec{r}) - \vec{f}(\vec{r})$$

- Fundamental field components

Order	DOF per cell	
0.5	6	
1	12	
1.5	20	
2	30	
2.5	45	
3	60	
3.5	84	
4	105	

- Field Representation in the Finite Element Method
 - Residuals of vector fields

$$\vec{R}(\vec{r}) = \sum_{i=0}^{N-1} a_i \ \vec{w}_i(\vec{r}) - \vec{f}(\vec{r})$$

- Fundamental field components

- Field reconstruction using the Kirchhoff integral
 - Field values inside a closed surface can be determined once the surface field components are available
 - Kirchhoff integral

G =	$e^{-ik \vec{r}-\vec{r}' }$	k =	$2\pi f$
	$\overline{4\pi \vec{r} - \vec{r}' }$	κ —	c_0

$$\vec{E}(\vec{r}) = \int \left(k(\vec{n}' \times ic_0 \vec{B}') \ G - (\vec{n}' \times \vec{E}') \times \nabla G - (\vec{n}' \cdot \vec{E}') \ \nabla G \right) dA'$$
$$ic_0 \vec{B}(\vec{r}) = \int \left(k(\vec{n}' \times \vec{E}') \ G - (\vec{n}' \times ic_0 \vec{B}') \times \nabla G - (\vec{n}' \cdot ic_0 \vec{B}') \ \nabla G \right) dA'$$

- Field reconstruction using the Kirchhoff integral
 - Surface selection

- Field reconstruction using the Kirchhoff integral
 - Surface selection

- Field reconstruction using the Kirchhoff integral
 - Surface selection

Field component E_x parallel to the cavity axis

Field component E_v parallel to the cavity axis

Field component E_z parallel to the cavity axis

Field component cB_x parallel to the cavity axis

Field component cB_v parallel to the cavity axis

Field component cB_z parallel to the cavity axis

Mathematica

- Generate Symmetric Mesh in the Cavity region
 - Use CST mesher for the "blue" region
 - Use proper software to copy the corresponding tetrahedral mesh to the "orange" region
 - Make sure that the interfaces

match

Field component E_x parallel to the cavity axis

Field component E_v parallel to the cavity axis

Field component E_z parallel to the cavity axis

Field component cB_x parallel to the cavity axis

Field component cB_v parallel to the cavity axis

Field component cB_z parallel to the cavity axis

- Field component E_x along the cavity axis
 - Real and imaginary parts

- Field component E_v along the cavity axis
 - Real and imaginary parts

- Field component E_z along the cavity axis
 - Real and imaginary parts

- Field component cB_x along the cavity axis
 - Real and imaginary parts

- Field component cB_v along the cavity axis
 - Real and imaginary parts

- Field component cB_z along the cavity axis
 - Real and imaginary parts

Outline

- Motivation
- Computational Model
 - Geometry and mesh information
- Simulation results
 - Field components parallel to the cavity axis
 - FEM on tetrahedral meshes
 - Kirchhoff integral representation

Summary / Outlook

Summary / Outlook

- Summary:
 - Precise modeling of a single TESLA 3.9 GHz cavity including the input coupler and two HOM couplers
 - Eigenmode analysis performed for the accelerating mode
 - Electromagnetic field extraction based on unsymmetric/symmetric tetrahedral meshes for classical FEM solutions and the Kirchhoff integral representation
- Outlook:
 - Application to a chain of cavities
 - Vinh Pham-Xuan will improve the eigenvalue solver

Field component E_x parallel to the cavity axis

Field component E_x parallel to the cavity axis

Field component E_v parallel to the cavity axis

Field component E_z parallel to the cavity axis

Field component cB_x parallel to the cavity axis

Field component cB_v parallel to the cavity axis

Field component cB_z parallel to the cavity axis

- Field reconstruction using the Kirchhoff integral
 - Surface selection

- Field reconstruction using the Kirchhoff integral
 - Surface selection

- Field reconstruction using the Kirchhoff integral
 - Surface selection

