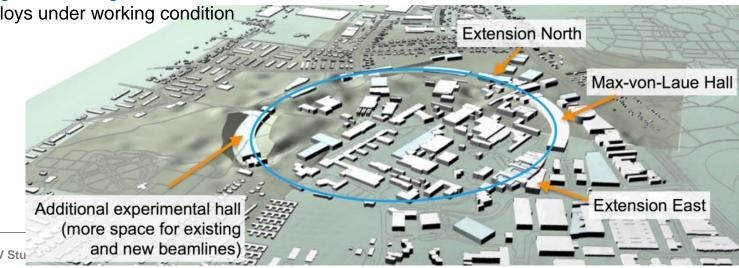

PETRA IV – 100 MHz cavity.

• PETRA IV and MAX IV 100 MHz Cavity

Martin Dohlus, Rainer Wanzenberg DESY

Collaboration meeting Jan 23, 2016


PETRA IV – Decoding the Complexity of Nature

PETRA IV – The ultimate 3D process microscope has the potential:

- to address individual organelles in living cells and follow metabolism pathways with elemental and molecular specificity
- to image the chemistry inside a battery down the atomic level and understand their aging processes
- to map interfaces in functional materials, e.g., for a thorough understanding of frictional processes on the way to enhance energy efficiency and reduce emissions
- to study the synthesis of novel materials and catalytic reactions inside a chemical reactor on all relevant length scales
- to image individual grains in novel materials and alloys under working condition

Parameters and parameter range:

PETRA IV Parameter		
Energy	6 GeV	(4.5 – 6 GeV)
Current	100 mA	(100 – 200 mA)
Number of bunches	~ 1000	
Emittance horz.	10 pm rad	(10 – 30 pm rad)
vert.	10 pm rad	(10 – 30 pm rad)
Bunch length	~ 100 ps	

Lattices Investigated for the PETRA Upgrade

Started to investigate two different lattice types

- 1. Based on the ESRF-HMBA cell
- 2. Based on 4D-phase space exchange and MBAs with non-interleaved sextupoles

1. Lattice based on HMBA Cells

Arcs: 9 HMBAs cells to build a 45° arc
8 identical arcs
Straight sections: FODO cells

25.0

22.5

20.0

17.5

15.0 12.5

10.0

7.5

5.0

2.5

0.0

0.0

4.6

is 12 pm rad at 6 GeV ✓

s (m)

 β_{i} (m), β_{i} (m)

MAD-X 5 02 10 22/05/16 19 07 38

0.040

0.035

0.030

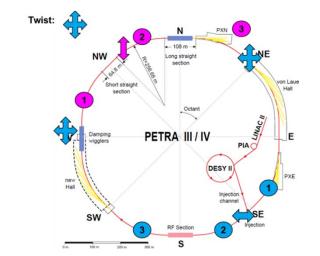
0.025

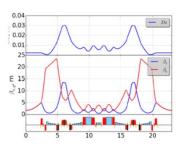
0.020

0.015

0.010

0.005


-+ 0.023.0


18.4

D (m)

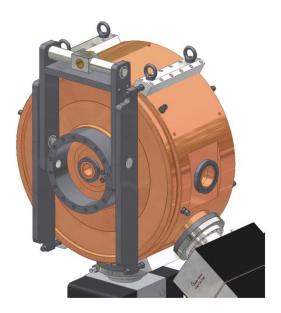
2. <u>4D-phase space exchange and MBAs</u>

- arc cells with non interleaved sextupoles
- Undulator section, preliminary version with HMBA

Emittance ~ 20/20 pm ✓ (5 GeV, wigglers not yet included) Undulator cell not yet optimized ×

Cell not yet optimized, (small dynamic aperture) *

Horz. emittance of HMBA-based ring

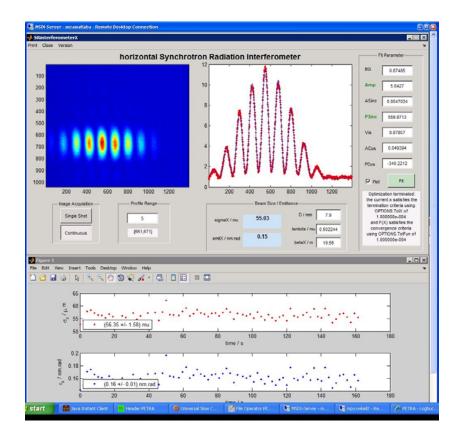

Intra Beam Scattering

Small transverse beam size

→ Emittance growth due to multi Coulomb scattering

Mitigation: longer bunches, lower RF frequency 100 MHz

MAX IV cavity:



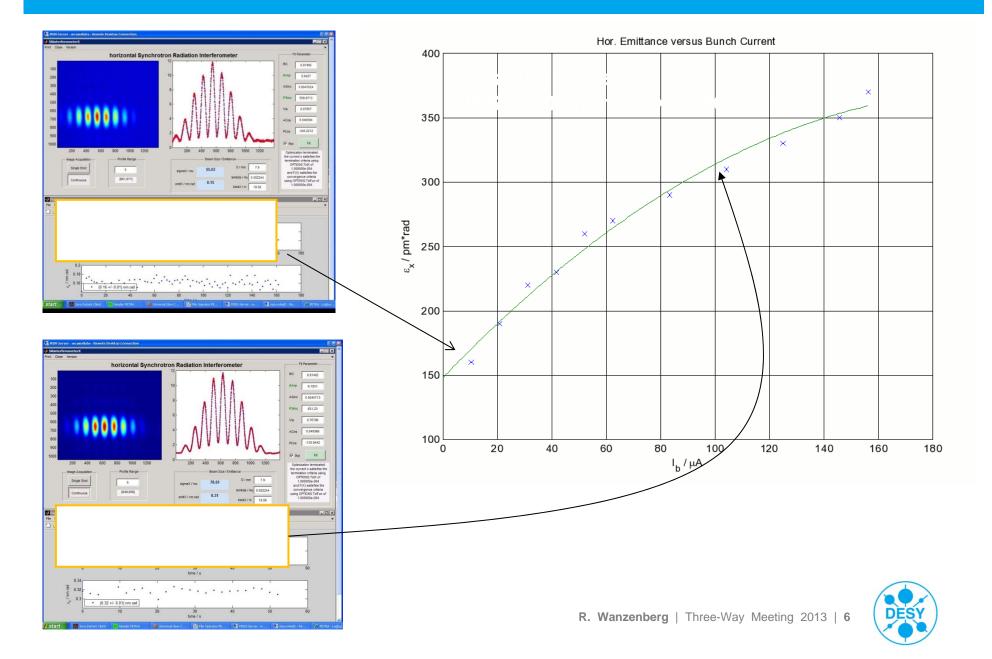
Test Runs at Low Energy (3 GeV) and Low Emittance

July 16, 2013 PETRA III, 3 GeV, horz. Emittance 160 pm rad I = 5 mA in 480 bunches, N = 5 x 10^8 / Bunch

July 2013 Several test runs at low energy

FODO arcs: 72 deg lattice wiggler section matched, predicted emittance: 3 GeV: 160 pm rad

Intrabeam scattering:


$$A \sim rac{N_0}{\gamma^4 \, \, \epsilon_x \, \epsilon_y \, \sigma_s \, \sigma_p}$$

$$\frac{1}{\tau_x} = \left\langle A \left[f(1/a, b/a, q/a) + \frac{D_x^2 \sigma_h^2}{\sigma_{x\beta}^2 f(a, b, q)} \right] \right\rangle$$

R. Wanzenberg | Three-Way Meeting 2013 | 5

Intra Beam Scattering / Emittance Growth

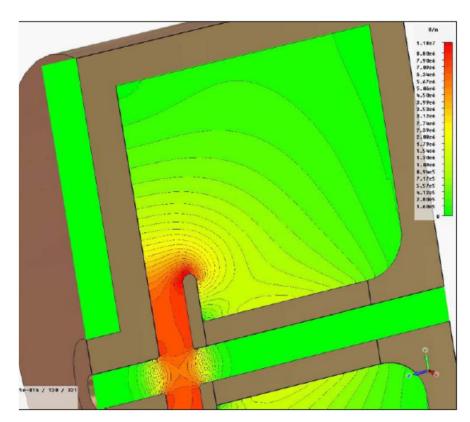

	MAX IV and SOLARIS design	ASTRID2 design		
RF specifications				
Frequency mode 1	99.931 MHz	104.9 MHz		
Required tuning range		+/- 1 mm		
Accelerating voltage	300 kV			
Copper power loss	30 kW	15 kW		
Coupler power		120 kW		
	2	-49 -35 -39 -25 -29 -15 -20 -5 -5		

Figure 2 : 2D inner shape deviations from specification

MAX IV 100 MHz Cavity

HOMs

: Electric field at the unperturbed resonator

Higher modes			
	Q	Frequency [MHz]	
1	20847	100.0	
2	34022	408.5	
3	28926	419.3	
4	28702	419.5	
5	35996	461.3	
6	42849	469.3	
7	42825	470.6	
8	51847	528.8	
9	49451	529.4	
10	27698	554.3	
11	27665	554.6	
12	62878	600.2	
13	62240	601.4	
14	47416	620.0	
15	30828	621.5	
16	62134	622.9	
17	56877	629.9	
18	44327	656.7	
19	44410	657.0	
20	42778	718.0	

PETRA IV 100 MHz Cavity

1. Calculation of basic parameters for an 100 MHz cavity

f, R/Q , Q

Max E, H field

2. HOM calculations

2. coupler design

3. multi pactoring

Thank you for your attention !

