Selected Beam Studies at PITZ in 2016 (2nd 1/2)

- Motivation
- Correction of electron beam asymmetry
- Slice energy spread and longitudinal phase space measurements
- Studies on spiky structure of electron beam trains
- Some issues of the flattop pulse shaping

M. Krasilnikov DESY-TEMF-Meeting , 23.01.2017

E-beam X-Y asymmetry: Larmor angle experiment

Simulations with rotation quads model (Q. Zhao)

Use rotation guads model in ASTRA simulation by scanning the rotation angle and z position.

→ Find the parameters for beam images at High1.Scr1 to fit the experiment images, the direction of the beam wings for both solenoid polarity.

361

 \rightarrow 2D-3D space charge used in ASTRA simulation, z trans=0.12m.

Experimental setup: Pgun=5MW, 6.178 MeV/c, gradient is 54.2 MeV/c, 500 pC no booster 05.09A-06.09N.2015.

0.6

Q_length(1)=0.01, $Q_K(1) = +-0.6$, **Q_pos(1)= x.xx**, Q zrot(1) = y.yy

Summary of the simulations:

- Position: around z=0.18m \checkmark
- Rotation angle: Skew guads: 45 degree(negative polarity) / 135 degree(positive polarity).
- Polarity: same, not effected by solenoid field polarity.
- \checkmark Position: around z=0.34m
- Rotation angle: Normal guads.
- Polarity: when change the solenoid polarity, the quads polarity also changed.

First design of the GUN Quad (I. Isaev)

- Aluminum frame
- 0.56 mm copper cable
- 180 windings per coil
- 2 thermal switchers (80 degC max)
- Non-magnetic screws
- Fixed by radiation-hard cable tie
- Usage with 3A power supply

Gun Quad tests (I. Isaev)

M. Krasilnikov | Selected Beam Studies at PITZ in 2016 | 23.01.2017 | Page 5

Experiment with single gun quad

Experimental setup: BSA = 1.2mm / Gun power = 5MW / GunPhase = MMMG / Charge = 500pC / I_Bucking = 0A / Booster OFF.

Emittance measurements with single gun quad

Second design: Gun.Q1 and Gun.Q2 (I. Isaev)

Parameters:

- Combination of a normal and a skew quads
- Aluminum frame
- 0.56 mm copper cable
- **140** windings per coil
- 2 thermal switchers (80 degC max)
- Non-magnetic screws
- Fixed by radiation-hard cable tie
- Q_grad = 0.0117 T/m @ 1A

Experiment with two quads

Experimental setup: BSA = 1.2mm / Gun power = 5MW / GunPhase = MMMG / Charge = 500pC / I_Bucking = 0A / Booster OFF.

	I main, A	-381	+381	-371	+371	-351	+351	-350	+350	-341	+341	-336	+336
Low.Scr2	GQ1, A	0.7	-0.3										
	GQ2, A	-0.2	-0.6										
Low.Scr3	GQ1, A			0.4	-0.7								
	GQ2, A			0.0	-0.7								
Hihg1.Scr1	GQ1, A					+0.55	-0.55	0.2	-0.6	0.2	-0.6	0.5	-0.9
	GQ2, A					-0.45	-0.45	-0.5	-0.5	-0.5	-0.2	-0.7	0.1
High1.Scr3	GQ1, A									0.2	-0.6	0.5	-0.9
	GQ2, A									-0.5	-0.2	-0.7	0.1

Influence on measured emittance

M. Krasilnikov | Selected Beam Studies at PITZ in 2016 | 23.01.2017 | Page 10

Experiment on beam tilt in LEDA

Beam asymmetry: Summary and Outlook

- Two gun quad designs are modeled, produced and tested
- It is possible (partially) compensate the beam X-Y asymmetry for all solenoid settings (current and polarity)
- Compensation of the beam asymmetry requires 2 quads (N- and Skew) setup, which is currently in the operation
- E-beam tilt in LEDA can be compensated
- Gun quads make emittance and transverse phase space more symmetric, but not smaller*
- A beam shape evaluation and optimization algorithm has to be improved
- Further experiments on emittance with optimized beam steering (trajectory) and on beam tilt in LEDA for systematic dependencies GQ1/2=F(Imain, Pgun, GunPhase,...) have to be prepared
- The position and geometry of the gun quads must be optimized for better beam asymmetry compensation

δE-program at PITZ (from the last meeting)

Idea: establish δE measurements (best resolution and flexibility) and measure δE for various conditions (temporal profiles, SC effect, etc.)

Motivation from DESY-HH:

• Initial δE for micro-bunching instability studies (M. Dohlus)

Motivation from PITZ:

- Measurements vs. simulations
- Improve measured σE (projected) understanding
- ?Detailed emission modeling (e.g. zero-crossing phase)

δE Measurements with long Gaussian on 17.11.2016A-N: VC2

δE Measurements with long Gaussian on 17.11.2016A-N: Pz-gun

> LEDA scan (17.11.2016 23:11)

LEDA projection at MMMG phase, -138 deg (17.11.2016 21:30)

LEDA projection at MMMG phase, -138 deg (17.11.2016 23:30), + fine tuned solenoid

Longitudinal Phase Space measurements: TDS SP scan in HEDA2

Slice energy spread: systematic errors estimation

> Slice energy spread measurement

- Real slice energy spread
- TDS contribution

$$\delta_{E}^{measured} \approx \sqrt{\left(\delta_{E}^{real}\right)^{2} + \left(\delta_{E}^{\beta}\right)^{2} + \left(\delta_{E}^{TDS}\right)^{2}}$$

Beta function contribution

M. Krasilnikov | Selected Beam Studies at PITZ in 2016 | 23.01.2017 | Page 17

...+ ASTRA simulations

ASTRA simulations with long Gaussian (11.5 ps FWHM) photocathode laser pulse

7 14 12 6 -energy spread rms energy spread (keV) -current 5 10 current (A) 4 8 3 6 1keV/c 2 4 2 0 0 -2 0 2 6 -6 -4 Δ z < z > (mm)

Measurements SP(TDS)=0.25

Figure 2

M. Krasilnikov | Selected Beam Studies at PITZ in 2016 | 23.01.2017 | Page 18

Some recent observations (21-22.01.2017M)

Westernamen wagen

Temporal profile FWHM Long Gaussian ~11-11.5ps

E-beam momentum modulations observed in: >

No. 5
Control
<thControl</th>
<thControl</th>
<thCon

- LEDA (Pz~6.4MeV/c)
- HEDA1 (Pz~22.1MeV/c)

an and Wa

Slice energy spread at PITZ: Conclusions and outlook

- LPS (δE) measurements with Gaussian photocathode laser pulses (short 2ps and long 11.5ps) yield the measured rms slice energy spread of 6-7keV/c (whereas ASTRA→<1keV/c for long Gaussian pulses)</p>
- > Still resolution on the slice energy spread seems to be a limiting factor:
 - Beam transverse size in the HEDA2 dipole (beta function)
 - TDS induced energy spread (estimated $\frac{d(\delta E)}{dSP(TDS)} \sim 3 \frac{eV}{MV}$)
- Measured longitudinal phase space (LPS) shows modulation even with long Gaussian cathode laser pulses:
 - "MB-instability" at the photocathode (observed already in LEDA)?
 - Space charge effect while transport?
 - Measurement artifact (but observed at 3x locations)?
 - Up to now was not observed in e-beam temporal profile
- > TDS in the low energy section would be useful
- > Any ideas (to explain measurements and to refine them) are welcomed

Studies on profile of electron bunch trains – "Q-train" (Y. Chen) Motivation (/Observation at FLASH)

Emission issue of fresh cathode 73.3 (and some others) at FLASH¹⁻²)

Fresh cathode in the gun 4-Feb-2015; QE=10%

- A flat energy distribution of the laser pulse train produces a 'spike' at the head of the electron bunch train emitted from a fresh cathode
- Spike strength depends on laser energy density and accelerating field on cathode
- The decay time decreases slowly with time over weeks

1) Siegfried Schreiber, Sven Lederer, FEL Seminar DESY, 2016

2) S. Schreiber, S. Lederer, FEL15', Daejeon, Korea, 2015

"Q-train" studies: Start-up measurements at PITZ

- > RF stabilities along charge pulse train (amplitude and phase)
- → following emission model, full field at cathode influences QE
- simultaneous recording gun field amplitude and phase@uTCA
- > Cathode laser energy distribution along charge pulse train
- check laser energy profile using photodiode after BSA and photomultiplier at laser trolley
- Charge measurements using LOW. ICT1 @ADC and FCs @Scope
- > Plays to correlate relevant parameters
 - BSA size
 - Cathode laser energy
 - Accelerating field gradient

