Eigenmode Analysis for the PETRA III Cavity

W. Ackermann, H. De Gersem, T. Weiland Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt

Outline

- Motivation
- Computational Model
 - Drawings and geometry information
 - Numerical problem formulation
- Cavity tuning
 - Cell radius variation for the "reliable" and "spark" models
- Simulation results
 - Mode pattern and characteristic data for the "reliable" and "spark" models
- Summary / Outlook

Outline

UNIVERSITÄT DARMSTADT

Motivation

- Computational Model
 - Drawings and geometry information
 - Numerical problem formulation
- Cavity tuning
 - Cell radius variation for the "reliable" and "spark" models
- Simulation results
 - Mode pattern and characteristic data for the "reliable" and "spark" models
- Summary / Outlook

- PETRA Cavities
 - Photographs

From time to time automatic switch-off of the power supply due to unexpected high fields in the cavity or waveguide system.

Investigation Strategy

- Set up model "spark" with plunger positions 9 mm, modify radii r₁ to r₇ such, that the fundamental mode oscillates at 499,65 MHz and the bead-pull measurement "Cavity Nr. 23" is reproduced.
- Set up model "reliable" with plunger positions 28 mm, modify radii r₁ to r₇ such, that the fundamental mode oscillates at 499,65 MHz and the bead-pull measurement "Cavity Nr. 48" is reproduced.
- Use a port boundary condition for the waveguide during the tuning procedure.
- Calculate R/Q and Q values for all modes up to 1,2 GHz.
- Determine max. E and max. H in the plunger slits for all nodes. Keep the energy per mode constant.
- Use either PEC or PMC boundary conditions instead of the port boundary condition for the waveguide during the mode calculations.

Bead-pulling measurement for the model "spark"

- Bead-pulling measurement for the model "reliable"

Outline

TECHNISCHE UNIVERSITÄT DARMSTADT

Motivation

- Computational Model
 - Drawings and geometry information
 - Numerical problem formulation
- Cavity tuning
 - Cell radius variation for the "reliable" and "spark" models
- Simulation results
 - Mode pattern and characteristic data for the "reliable" and "spark" models
- Summary / Outlook

• PETRA III, 500 MHz, 7-cell Cavity

• PETRA III, 500 MHz, 7-cell Cavity

TECHNISCHE UNIVERSITÄT DARMSTADT

June 27, 2016 | TU Darmstadt | Fachbereich 18 | Institut für Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 14

Computational Model

• PETRA III, 500 MHz, 7-cell Cavity

- Waveguide length

Port

- PETRA III, 500 MHz, 7-cell Cavity
 - Geometry information (Details of the input coupler)

- PETRA III, 500 MHz, 7-cell Cavity
 - Geometry information (Details of the input coupler)

• PETRA III, 500 MHz, 7-cell Cavity

- Geometry information (Details of the tuning plungers)

• PETRA III, 500 MHz, 7-cell Cavity

- Geometry information (Details of the tuning plungers)

• PETRA III, 500 MHz, 7-cell Cavity

- Geometry information (Details of the tuning plungers)

- PETRA III, 500 MHz, 7-cell Cavity
 - Geometry information (Details of the tuning plungers)

Outline

TECHNISCHE UNIVERSITÄT DARMSTADT

- Motivation
- Computational Model
 - Drawings and geometry information
 - Numerical problem formulation
- Cavity tuning
 - Cell radius variation for the "reliable" and "spark" models
- Simulation results
 - Mode pattern and characteristic data for the "reliable" and "spark" models
- Summary / Outlook

R = { 213.65, 210.85, 210.90, 209.85, 210.90, 210.85, 213.65 } mm

dR = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 } mm

TECHNISCHE UNIVERSITÄT DARMSTADT

Model "spark"

	А	В	С	D	E	F	G	Н	М	Р	Q
1	Run ID	dR1	dR2	dR3	dR4	dR5	dR6	dR7	Tetrahedrons	Frequenz / MHz	Frequenzabweichung / kHz
2	1	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1.201.788	499,778921	128,921
3	2	0,100	0,000	0,000	0,000	0,000	0,000	0,000	1.203.759		
4	3	0,000	0,100	0,000	0,000	0,000	0,000	0,000	1.203.385		
5	4	0,000	0,000	0,100	0,000	0,000	0,000	0,000	1.203.963		
6	5	0,000	0,000	0,000	0,100	0,000	0,000	0,000	1.203.160		
7	6	0,000	0,000	0,000	0,000	0,100	0,000	0,000	1.203.386		
8	7	0,000	0,000	0,000	0,000	0,000	0,100	0,000	1.203.552		
9	8	0,000	0,000	0,000	0,000	0,000	0,000	0,100	1.205.016		
10	9	0,119	-0,005	0,055	0,246	0,062	0,020	0,074	1.204.470	499,654467	4,467
11	10	0,219	-0,005	0,055	0,246	0,062	0,020	0,074	1.203.479		
12	11	0,119	0,095	0,055	0,246	0,062	0,020	0,074	1.204.842		
13	12	0,119	-0,005	0,155	0,246	0,062	0,020	0,074	1.204.895		
14	13	0,119	-0,005	0,055	0,346	0,062	0,020	0,074	1.203.122		
15	14	0,119	-0,005	0,055	0,246	0,162	0,020	0,074	1.205.044		
16	15	0,119	-0,005	0,055	0,246	0,062	0,120	0,074	1.205.204		
17	16	0,119	-0,005	0,055	0,246	0,062	0,020	0,174	1.205.856		
18	17	0,131634	-0,030270	0,067898	0,247176	0,071430	0,016050	0,086529	1.204.205	499,651077	1,077
19	18	0,232	-0,030	0,068	0,247	0,071	0,016	0,087	1.205.382		
20	19	0,132	0,070	0,068	0,247	0,071	0,016	0,087	1.204.426		
21	20	0,132	-0,030	0,168	0,247	0,071	0,016	0,087	1.203.930		
22	21	0,132	-0,030	0,068	0,347	0,071	0,016	0,087	1.205.444		
23	22	0,132	-0,030	0,068	0,247	0,171	0,016	0,087	1.204.128		
24	23	0,132	-0,030	0,068	0,247	0,071	0,116	0,087	1.204.482		
25	24	0,132	-0,030	0,068	0,247	0,071	0,016	0,187	1.204.001		
26	25	0,133614	-0,031288	0,068746	0,246354	0,075181	0,013435	0,088617	1.203.513	499,649611	-0,389
27											

R = { 213.65, 210.85, 210.90, 209.85, 210.90, 210.85, 213.65 } mm

dR = { 0.134, -0.031, 0.069, 0.246, 0.075, 0.013, 0.087 } mm

R = { 213.65, 210.85, 210.90, 209.85, 210.90, 210.85, 213.65 } mm

dR = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 } mm

TECHNISCHE UNIVERSITÄT DARMSTADT

Model "reliable"

	Α	В	С	D	E	F	G	Н	Р	Q
1	Run ID	dR1	dR2	dR3	dR4	dR5	dR6	dR7	Frequenz / MHz	Frequenzabweichung / kHz
2	1	0,000	0,000	0,000	0,000	0,000	0,000	0,000	500,119049	469,049
3	2	0,100	0,000	0,000	0,000	0,000	0,000	0,000		
4	3	0,000	0,100	0,000	0,000	0,000	0,000	0,000		
5	4	0,000	0,000	0,100	0,000	0,000	0,000	0,000		
6	5	0,000	0,000	0,000	0,100	0,000	0,000	0,000		
7	6	0,000	0,000	0,000	0,000	0,100	0,000	0,000		
8	7	0,000	0,000	0,000	0,000	0,000	0,100	0,000		
9	8	0,000	0,000	0,000	0,000	0,000	0,000	0,100		
10	9	0,216	0,163	0,324	0,451	0,285	0,162	0,272	499,676489	26,489
11	10	0,316	0,163	0,324	0,451	0,285	0,162	0,272		
12	11	0,216	0,263	0,324	0,451	0,285	0,162	0,272		
13	12	0,216	0,163	0,424	0,451	0,285	0,162	0,272		
14	13	0,216	0,163	0,324	0,551	0,285	0,162	0,272		
15	14	0,216	0,163	0,324	0,451	0,385	0,162	0,272		
16	15	0,216	0,163	0,324	0,451	0,285	0,262	0,272		
17	16	0,216	0,163	0,324	0,451	0,285	0,162	0,372		
18	17	0,292	0,143	0,320	0,460	0,317	0,156	0,289	499,653842	3,842
19	18	0,392	0,143	0,320	0,460	0,317	0,156	0,289		
20	19	0,292	0,243	0,320	0,460	0,317	0,156	0,289		
21	20	0,292	0,143	0,420	0,460	0,317	0,156	0,289		
22	21	0,292	0,143	0,320	0,560	0,317	0,156	0,289		
23	22	0,292	0,143	0,320	0,460	0,417	0,156	0,289		
24	23	0,292	0,143	0,320	0,460	0,317	0,256	0,289		
25	24	0,292	0,143	0,320	0,460	0,317	0,156	0,389		
26	25	0,295	0,147	0,320	0,462	0,322	0,152	0,292	499,649023	-0,977
27	26	0,295461	0,147189	0,320166	0,462386	0,321769	0,152284	0,292034	499,650115	0,115
28										

R = { 213.65, 210.85, 210.90, 209.85, 210.90, 210.85, 213.65 } mm dR = { 0.295, 0.147, 0.320, 0.462, 0.322, 0.152, 0.292 } mm

- Model "spark"
 - Cavity truncated
 - Input coupler cut view
 - Waveguide cut view

Accelerating Mode

Outline

TECHNISCHE UNIVERSITÄT DARMSTADT

- Motivation
- Computational Model
 - Drawings and geometry information
 - Numerical problem formulation
- Cavity tuning
 - Cell radius variation for the "reliable" and "spark" models

Simulation results

- Mode pattern and characteristic data for the "reliable" and "spark" models

Summary / Outlook

Probe Locations for Maximum Field Determination

Probe Locations for Maximum Field Determination

Resonance Frequency (all calculated modes)

Resonance Frequency (first forty modes)

Quality Factor (all calculated modes)

On Axis R / Q (all calculated modes)

Off Axis R / Q (all calculated modes)

Off Axis R / Q (all calculated modes)

Maximum Field Values in the Plunger Slits (all modes)

Maximum Field Values in the Plunger Slits (all modes)

- Field Classification and Mode Correlation
 - Evaluation on circular lines
 - R = 100 mm
 - 60 samples per line

- Three lines per cavity dZ = ± 50 mm

Field Classification and Mode Correlation

TECHNISCHE UNIVERSITÄT DARMSTADT

 Mode Correlation 50 100 150 200 - Model "reliable" PEC Model "ReliableE" 50 50 100 100 Model "ReliableH" PMC 150 150 ш Index | 200 200 50 100 150 200 Index H

Mode Correlation

TECHNISCHE UNIVERSITÄT DARMSTADT

Mode Correlation

TECHNISCHE UNIVERSITÄT DARMSTADT

Monopole

Monopole

Field Classification

Field Classification

Field Classification

Mode Correlation ("reliable E, reliable H")

Mode Correlation ("reliable E, reliable H")

Mode Correlation ("spark E, spark H")

Mode Correlation ("spark E, spark H")

Mode Correlation ("reliable H, spark H")

Outline

- Motivation
- Computational Model
 - Drawings and geometry information
 - Numerical problem formulation
- Cavity tuning
 - Cell radius variation for the "reliable" and "spark" models
- Simulation results
 - Mode pattern and characteristic data for the "reliable" and "spark" models

Summary / Outlook

Summary / Outlook

- Summary:
 - Precise modeling of the PETRA III cavity including pump ports, tuning plunger and input coupler
 - Eigenmode analysis performed up to 1.2 GHz (mode pattern, frequency, R/Q, Q via power loss, slit field)
 - Mode classification w.r.t. the azimuthal order
 - R/Q of the fundamental monopole passband sensitive to model change from "spark" to "reliable"
- Outlook:
 - Calculation of monopole passband with port BC?

